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How can recommender interfaces help users to adopt new behaviors? In the behavioral change literature, social norms and other
nudges are studied to understand how people can be convinced to take action (e.g., towel re-use is boosted when stating that ‘75% of
hotel guests’ do so), but most of these nudges are not personalized. In contrast, recommender systems know what to recommend in a
personalized way, but not much HCI research has considered how personalized advice should be presented to help users to change
their current habits.

We examine the value of depicting normative messages (e.g., ‘75% of users do X’), based on actual user data, in a personalized
energy recommender interface called ‘Saving Aid’. In a study among 207 smart thermostat owners, we compared three different
normative explanations (‘Global’, ‘Similar’, and ‘Experienced’ norm rates) to a non-social baseline (‘kWh savings’). Although none
of the norms increased the total number of chosen measures directly, we show that depicting high peer adoption rates alongside
energy-saving measures increased the likelihood that they would be chosen from a list of recommendations. In addition, we show that
depicting social norms positively affects a user’s evaluation of a recommender interface.

CCS Concepts: • Information systems → Decision support systems; • Human-centered computing → Human computer
interaction (HCI); User models.
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1 INTRODUCTION

Recommender interfaces seek to present content that fits user preferences [29]. In doing so, they can explain why
certain items are presented [10, 58], for example by highlighting that other users have also bought a certain product.
While recommenders in leisure domains (e.g., movies) are optimized to promote any item, some recommenders wish to
promote specific items that support behavioral change [20, 54], for example, in domains such as healthy eating and
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2 Starke et al.

energy conservation [23, 56, 59]. For obvious reasons, recommending something specific is less likely to be successful
and, therefore, social explanations of recommendations are often used to ‘nudge’ users (cf. [49, 57]), triggering social
comparison mechanisms that might help to convince users [21, 44]. For example, highlighting that 65% of other users
have bought a healthy product in an online supermarket, might persuade a user to also do so.

Studies in psychology have analyzed how social norms can effectively promote specific, one-size-fits-all environmental
behaviors (e.g., [4, 13, 44]). A good example is the work of Goldstein et al. [25], who persuaded tenants of hotel rooms
to re-use their towel by highlighting that ‘75% of others guests have done so’, instead of emphasizing the environmental
benefits of doing so. Such descriptive social norms have yet to be tested for a larger set of energy-saving measures. In
fact, digital nudges are rarely used in personalized interactive systems [30], nor in recommender systems that support
behavioral change [20, 53, 56]. Trying to convince users of energy-saving measures through social comparisons in
energy recommender systems is challenging though, because energy-saving measures that yield high kWh savings are
quite ‘unpopular’ [56]. For example, solar PV has only been installed on top of 13% of Dutch households [19], and “13%
of users have solar PV installed” is not very convincing when presented as a normative message. For such messages to
work, one needs at least a majority percentage to convince others. Our aim is to analyze whether we can use social
comparisons to create a majority norm that can promote ‘unpopular but useful’ energy-saving measures [25, 44].

A nudging message that uses a majority norm can be created even for unpopular energy-saving measures, by
highlighting the behavior of a specific group of peer users. For example, the adoption rate of Solar PV among more
experienced users is much higher than the average rate of 13% [19, 56], and possibly exceeds 50% among users with
a strong energy-saving attitude [56]. This would allow for a convincing, yet truthful majority norm message: “55%
of experienced users (like you) have solar PV installed”. Adoption rates for different kinds of users can be obtained
by using the psychometric Rasch model [33], which has been used in work on energy recommender systems [54, 56].
Rasch differentiates between users in terms of their attitudinal strength and between energy-saving measures in terms
of their frequency of use, so that both “users like you” and “energy-saving measures similar to this one” have actual
meaning. That is, we use the Rasch model to deliver personalized recommendations that use majority norm nudges to
convince users to take more energy-saving measures. In addition, depicting high norms scores might persuade users to
select specific measures, including relatively unpopular (i.e., low frequency of use), which tend to be energy-efficient
(i.e., high kWh savings), as well as to select those that are perceived as effortful (cf. [46, 53]).

1.1 Objectives

This is the point of departure for this paper. We blend social norms and recommender systems to help users attain their
energy-saving goals, designing social explanations to signal a majority norm in a personalized advice context. We present
an energy recommender interface named ‘Saving Aid’, which generates a list of household energy-saving measures that
is tailored towards a user’s energy-saving attitude through the psychometric Rasch model. In a between-subject web
study, we then use the Rasch model to craft and depict specific normative message alongside energy-saving measures
that highlight either the adoption rate of all users (Global Norms: ‘60% of users do this’), or that of peer users with
specific attitudinal strengths (Similar norms: ‘60% of users similar to you do this’; Experienced norms: ‘60% of users
who perform more measures than you do this’).

We posit the following research questions.We examine changes in choice behavior due to the depiction of social norms,
as well as explore whether other commonly used energy-saving attribute play role (e.g., kWh savings, perceived effort).
We differentiate between ‘overall’ changes in choice behavior (i.e., total number of chosen energy-saving measures, kWh
savings, and the difficulty of chosen measures), changes in what measure is chosen from a recommendation list due to
Manuscript submitted to ACM
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Promoting Energy-Efficient Behavior by Depicting Social Norms 3

presented content (i.e., whether users choose different energy-saving measures due to presented norm scores, while
controlling for other measure attributes, such as perceived effort), and changes in how users evaluate a recommender
interface (e.g., changes in user satisfaction):

• RQ1: Do social norms increase the number of chosen energy-saving measures or kWhs saved, and does this
differ across different norms and different energy-saving attitudes?

• RQ2: Do social norms and other measure attributes affect which energy-saving measures are chosen from within
a recommendation list?

• RQ3: To what extent do social norms affect a user’s evaluation of an energy recommender interface?

2 LITERATURE REVIEW

This review focuses on work in environmental psychology and nudging that involve descriptive, social norms. We
discuss the mechanisms of descriptive norms in psychological literature, contextualize them in the HCI domain, and
formulate expectations for our web study. In doing so, we explain how the psychometric Rasch model is used to
personalize energy-saving advice, as well as to craft effective social norms for our user study.

2.1 Nudges in a Personalized Context

Changes in a decision environment (i.e., ‘choice architecture’) that lead to predictable behavior are ‘nudges’ [57].
Notables examples include highlighting a default choice or using normative messages (e.g., ‘most users do X’) [25, 31].
The use of nudges and persuasive messages is rather uncommon in personalized interactive systems. For example,
while recommender systems typically provide decision support by optimizing what to recommend [29, 40], nudges
focus on how such content should be presented. This way, nudges can shift user preferences, which is also illustrated
by studies on explanations in recommender interfaces [12, 58]. For example, if a recommender explains that a user’s
peers have chosen specific items, this might steer a user’s preferences towards these items, even if they have a worse fit
according to the recommender system [12].

2.2 Descriptive Norms in Energy Conservation

To date, recommender systems and most HCI studies have examined conservation decisions [36, 54, 59], but only in a
social vacuum [1, 44]. While a few studies have applied social eco-feedback [24, 45], in which users are compared to their
peers (e.g., your neighbors consume 3000kWh annually [1, 4]), its effects on a user’s behavior are often limited [6]. The
majority of HCI studies have yet to adopt the theoretical and empirical evidence from environmental psychology that
explaining behaviors in terms of relevant peer groups and descriptive norms can affect one’s energy-saving behavior
and decision-making [25, 27, 44, 51].

A convincing message that affects preferences is one that highlights a majority norm [14]. Showing that a rather large
proportion of peers performs a certain behavior [13, 27, 38], can trigger or promote socially-desirable behavior [12, 63].
Two mechanisms underlie this effect: compliance (i.e., the propensity to act consistent with presented norms) and
conformity (i.e., adapting one’s behavior to match an apparent majority) [14]. Compliance refers to one responding to a
direct request to act consistently with presented norms [14], while conformity describes how a behavior is adapted to
meet that of an apparent majority. Both compliance and conformity can fulfill one’s need for accuracy or appropriateness
in behavior or decision-making, for it can alleviate uncertainty surrounding a certain behavior [13]. For instance,
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4 Starke et al.

individuals may want to gain the approval of others when it comes to pro-social behaviors, such as engaging in recycling
if many others do so too [47].

For the design of the current study, we highlight work from Goldstein et al. [25] on the use of social norms to
promote environmental behavioral. They show that hotel guests are more inclined to re-use their towels when asked to
do so using descriptive norms (‘join your fellow guests in helping to save the environment’), compared to a general
environmental message (‘help to save the environment’). Such normative messages highlight a community aspect (‘75%
of guests participated’), and are more convincing if they include context-rich or ‘local’ aspects [13, 25]. For instance,
they show that referring to ‘75% of hotel guests’, rather than ‘75% of citizens’ is more effective, for it highlights an
uncommon characteristic with the decision-maker [22, 25, 28].

Instead of only boosting a specific behavior, descriptive norms can also be used to promote a wider range of
sustainable behaviors [41]. For example, customers of web shops purchase more healthy and energy-saving products, if
they are explained using social norms instead of their environmental impact [3, 15]. We expect that this also applies to
personalized advice in a recommender interface, when depicting normative messages alongside energy-saving measures.

2.3 Rasch Model

There is arguably a large range of norm percentages (probably anything below 50%), which will not trigger conformity
[12–14]. Although it is hard to promote ‘unpopular’ measures such as ‘Install Solar PV’ [54], they typically yield
relatively high kWh savings [53]. It might therefore pay off to somehow promote such measures, by making them stand
out in the larger set of personalized user recommendations.

The dimensionality of energy conservation illustrates the large variety in adoption rates across measures [11, 33].
Energy-saving measures can be mapped on a one-dimensional scale using the psychometric Rasch model, based on how
often these measures are performed [60]. In the context of attitude theory ‘Campbell’s Paradigm’ [33]1, this frequency
of use or adoption rate is operationalized as behavioral costs, which is defined to represent the execution difficulty of a
measure, comprising different types of costs, such as money, time, and cognition [61]. This approach postulates that
measures with smaller adoption rates face higher behavioral costs. For example, a study that fitted a Rasch scale of 79
energy-saving measures, shows that 92% of respondents lower the thermostat when leaving the house for a longer
period [56], which has a relatively low behavioral cost level, while only 7% of respondents uses an energy-efficient heat
pump, which has high behavioral costs. Moreover, while it is easy to make verbal statements about the importance of
saving energy (i.e., low behavioral costs), engaging in actual behavior is much harder and arguably more representative
for mapping a user’s preferences in a recommender user model [53].

The characteristics of the Rasch model can be used to craft convincing social norms. An HCI study on energy
recommender systems by Starke et al. [54] shows how to form a latent factor model, by asking a group of persons
whether they perform a set of energy-saving measures, or not [33, 60]. Besides ordering measures on their adoption
rate this way, users are also ordered with respect to how many measures they perform, which is operationalized as a
person’s energy-saving attitude [33]. Hence, users with stronger attitudes are assumed to perform more measures.

The adoption rates of measures are what we label as ‘Global’ norms. These are statements about the general population
that can be presented alongside energy-saving recommendations, analogous to the norms used by Goldstein et al. [25].
For example, “55% of other users have installed weather strips on doors” [53]. As discussed in the introduction, we
1The Rasch model is used in this study as a mathematical formalization of Campbell’s Paradigm [33]. Other attitude theories tend to suffer from
attitude-behavior gaps [16], for one’s evaluative attitude might be at odds with one’s actual behavior. For example, one can agree that environmental
action is important (i.e., holding a favorable environmental attitude), but might not actually engage in any environmental behavior. Rasch accounts for
this uncertainty by describing a stochastic relation between attitude and behavior, instead of a deterministic relation.
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Promoting Energy-Efficient Behavior by Depicting Social Norms 5

expect normative messages such as “75% of participants use X” to signal that the majority of a population has already
adopted a certain energy-saving measure, and are therefore expected to be more persuasive than minority norms, such
as “30% of users do X”.

2.4 Crafting Personalized Social Norms

Using the Rasch Model, we can craft personalized norms that go beyond ‘Global’ percentages. Instead of highlighting
the frequency of use among all users, the behavior of specific groups can be highlighted. This is achieved through the
Rasch model, for the probability that a measure is performed by a specific user is person-dependent. This is shown in
Equation 1: the probability 𝑝 that a measure 𝑖 is performed depends on a measure’s behavioral costs 𝛿 , as well as the
attitudinal strength 𝜃 of an individual 𝑛, where 𝛿 and 𝜃 are expressed in logistic scale units (logits) [33, 60]:

𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜 𝑓 𝑛 𝑝𝑒𝑟 𝑓 𝑜𝑟𝑚𝑖𝑛𝑔 𝑖 = ln
𝑝𝑛𝑖

1 − 𝑝𝑛𝑖
= 𝜃𝑛 − 𝛿𝑖 (1)

For any energy-saving measure, Rasch predicts the same adoption probability for all users with a specific attitudinal
strength [34], along with increasing probabilities for users with stronger attitudes. Among the larger population, we
consider this probability to an adoption rate that can be communicated to a user, such as ‘60% of users with attitude X do
this’. Hence, we can craft personalized normative messages based on peer users with either similar or stronger attitudes.
Not only could higher norm scores across an entire recommendation list persuade users to choose more energy-saving
measures, it could also help to make ‘unpopular’ measures, which have a relatively low ‘Global’ adoption rate and
high behavioral costs, more appealing. This could, in turn, persuade users to choose measures that have relatively high
kWh savings (e.g., Solar PV, which has a low adoption rate), or to choose measures that are subject other unattractive
attributes, such as perceived effort [46, 52].

How can peer users with ‘similar or stronger attitudes’ be translated to a convincing normative message? Literature
on advice-taking highlights relevant ‘advice sources’ that can be used for this purpose. Mentioning a specific peer
group is shown to affect choice and advice acceptance [8], suggesting two important advice source characteristics for
our work. First, similarity in relevant attitudes can increase the extent to which advice is considered or liked [8, 50].
The Rasch scale allows the design of ‘Similar’ norms alongside recommendations, which can show higher adoption
rates than global norms, especially for users with stronger attitudes. For example, users with a strong attitude might be
presented the ‘Global’ norm “20% of users have installed radiator reflectors” [54], while the ‘Similar’ norm would be
“60% of users like you have installed radiator reflectors”.

A second characteristic is a peer user’s perceived expertise [8, 32]. Expert advice is less likely to be ignored than
suggestions from novices [7, 8, 32]. In this study, we assume peers to possess such higher expertise if they perform
more measures (‘Experienced’ norms), thus having stronger attitudes and higher adoption rates. For example, where
‘Similar’ norms would report “55% of users like you do X”, ‘Experienced’ norms at an attitude 𝜃 that is +1 logit stronger
than the user report an adoption rate of 78%.

Combining different advice sources and adoption rates, we craft three different normative messages:

• Global norms: “X% of users perform this measure.”
• Similar norms: “Y% of users who perform similar measures as you, perform this measure.”
• Experienced norms: “Z% of users who perform more measures than you, perform this measure.”
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6 Starke et al.

Table 1. Recommendation scenario to illustrate what norm percentages are presented for each norm, and how this depends on the
user’s attitudinal strength. We imagine that there are two users: User 1 has relatively weak energy-saving attitude, User 2 has a
relatively strong attitude. If each user is presented a measure that tailored towards their attitude (𝛿 = 𝜃 ), then these are the presented
norm percentage for each norm condition.

Presented Norm Percentages (for attitude-tailored advice: 𝛿 = 𝜃 )

Global Norms Similar Norms (=
User 𝜃 )

Experienced Norms (=
User 𝜃 + 1)

User 1: 𝜃1 = −1 72% 50% 75%
User 2: 𝜃2 = +1 30% 50% 75%

2.5 Global vs Person-Dependent Norm Scores

The percentages for our normative messages are determined using the Rasch model. To show how they depend on
a user’s energy-saving attitude, we present a recommendation scenario in Table 1. Suppose there are two users and
that User 1 has an attitude 𝜃1 = −1, which is weaker than User 2 (𝜃2 = +1), which are each presented a measure
with behavioral costs 𝛿 equal to their attitude 𝜃 (in line with [56]). As a result, User 1 is shown a measure with lower
behavioral costs than User 2.

Table 1 shows that ‘Global’ norm percentages depend on the user’s attitude. User 1 has a relatively weak attitude and
is therefore presented a ‘popular’ measure with a high ‘Global’ adoption rate (i.e., 70%). User 2 has a stronger attitude
and, therefore, her attitude-tailored measure has a lower ‘Global’ adoption rate of 30%, which is not very convincing. In
contrast, the adoption rates of the personalized ‘Similar’ or ‘Experienced’ norms do not depend on the ‘Global’ adoption
rate, but the user’s attitudinal strength and the measure’s behavioral costs. Therefore, they are identical for both users
(resp. 50% and 75%), and thus lead to a more convincing norm for User 2, compared to ‘Global’ norms.

Table 1 shows what normative messages are most likely to be the most effect what types of users. Based on the
adoption rates, we expect users with stronger attitudes (i.e., User 2) to choose more measures when facing ‘Similar’
norms, while users with weaker attitudes (i.e., User 1) do so for ‘Global’ norms. It is possible that the higher degree of
similarity signalled by a ‘Similar’ norm message could overcome differences in norm percentages with ‘Global’ norms
[25]. Nonetheless, another study by Yaniv et al. [62] argues that inexperienced users (i.e., with a weak attitude) are
more likely to rely on majority advice (i.e., a ‘Global norm %’) than similar advice, while experienced individuals (i.e.,
with a strong attitude) rely on similar peers.

Table 1 also suggests the additional benefit of higher adoption rates for ‘Experienced’ norms, compared to ‘Similar’.
Although the persuasiveness of expertise (i.e., “others who perform more measures than you”) may be mitigated
because of the reduced similarity, we expect that the higher adoption rates for Experienced norms (75%) across an entire
recommendation list will be more persuasive than similar norms (50%). This could particularly apply to the adoption of
measures that face high levels of behavioral costs or perceived effort [62].

2.6 Perception of Descriptive Norms

Besides evaluating behavior, it is also useful to understand how users perceive such a descriptive norm. Studies in
environmental psychology teach us that how an individual evaluates environmental aspects can determine behavioral
outcomes [2, 18]. For instance, social proof of others performing a particular behavior might lower the thresholds
towards performing it [21].
Manuscript submitted to ACM
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Promoting Energy-Efficient Behavior by Depicting Social Norms 7

Previous recommender studies have similarly highlighted the importance of perceptions in explaining the user
experience [37], for they allow us to understand why a change in a particular system aspect increases the user experience.
For example, Starke et al. [54] show that tailored recommendation lists with low levels of behavioral costs (𝛿) are more
likely to be perceived as feasible and, in turn, show stronger perceived support, higher levels of user satisfaction, and
more energy-efficient choices [54]. Likewise, we expect descriptive norms to lower the behavioral thresholds to choose
and, eventually, adopt energy-saving measures, which is assessed through perceived feasibility, perceived support, and
subsequent user satisfaction.

2.7 Research Expectations

Based on the discussed literature, we summarize the expectations for our user study per research question. First, we
examine whether social norms affect the total number of chosen measures and kWhs saved, across users with different
energy-saving attitudes (RQ1). In line with [25], we test three different interfaces that depict normative messages (i.e.,
‘Global’, ‘Similar’, and ’Experienced’ norms) alongside energy-saving measures in a recommender system, and compare
their effectiveness to a non-social baseline (i.e., kWh Saving Score). We formulate the following expectations:

• Social norms increase the number of energy-saving measures chosen by users, across all attitudinal strengths.
– Users with a weak energy-saving attitude choose more measures if a ‘Global’ norm is depicted instead of a
‘Similar’ norm, and vice versa for users with a strong energy-saving attitude.

– Users choose more measures if they are explained with ‘Experienced’ norms rather than ‘Similar’ norms.
• Social norms increase the amount of kWh savings per chosen measure, as well as the average behavioral level,
particularly for users with strong energy-saving attitudes.

Second, we investigate whether social norms and other measure attributes affect which energy-saving measures are
chosen from within a recommendation list (RQ2). Based on the reviewed literature and the recommendation scenario in
Table 1, we expect the following outcomes:

• The presented norm percentage increases the likelihood that a measure is chosen from a recommendation list.
• Measures with high levels of perceived effort are more likely to be chosen when accompanied by high norm
percentages, such as majority norms.

Finally, we examine whether social norms affect a user’s evaluation of our recommender interface (RQ3). Based on
previous energy recommender research, we expect users to perceive and evaluate recommender interfaces that depict
social norms more favorably, compared to those that emphasize the environmental impact.

3 METHOD

We investigated to what extent descriptive norms boosted the adoption of a heterogeneous set of tailored energy-saving
measures. We first collected data in a pre-study to validate our one-dimensional construct, used to personalize both
advice and norms. Thereafter, we designed our energy recommender interface called ‘Saving Aid’ and performed an
online user study on our normative intervention.

3.1 Pre-study: Setting up a Rasch Scale for Personalized Norms

To generate recommendations based on the Rasch model, we designed a survey that was part of different study [53].
Participants were asked to disclose their current energy-saving behavior, indicating for 13 to 25 randomly sampled
energy-saving measures (out of a database of 134) whether they performed them or not (‘yes’ or ‘no’).
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We used dichotomous responses from 555 participants (50.6% male) with a mean age of 43.4 years (𝑆𝐷 = 19.7) to fit a
one-dimensional measurement scale of 134 energy-saving measures. An tabulation of the scale is reported in Appendix
A, in Table 5. Each measure was assigned a distinct behavioral cost level, which formalized how likely a user would be
to perform a particular measure [33]. In terms of adoption rates, the scale ranged from 94% to 1%.

Furthermore, Table 5 also shows how the estimated kWh savings of each measure are distributed across the scale.
Although higher kWh savings seemed to be more prevalent ‘higher up the scale’ (i.e., for higher behavioral cost levels),
it was possible to perform measures with moderately high kWh savings across the entire scale. This is also depicted in
Figure 1, which shows a small increase in the average kWh savings for higher behavioral cost levels.

Fig. 1. kWh savings across the Rasch construct, averaged per behavioral cost level.

3.1.1 Fit Statistics. Table 5 also describes the scale’s infit statistics (for mathematical details, see [9]). Overall, the
scale’s item parameters were determined reliably (𝛼 = .95,𝑀 = .05, 𝑆𝐷 = 1.57), as all measures fitted the construct by
meeting the prescribed ‘infit’ criteria [9]. Due to an item separation of 4.51, we could reliably discern 4 to 5 strata of
behavioral costs.

3.1.2 Perceived Effort. The same pre-study also collected data on how effortful participants perceived measures to be
[53]. Although a measure’s perceived effort decreased the likelihood that a measure was chosen in previous studies [46],
we expected that depicting high norm scores might help to increase that likelihood. A sub-sample of the participants
(𝑁 = 304) was presented a 4-point scale alongside each measure, on which they could indicate whether executing a
measure would require either ‘very little effort’, ‘little effort’, ‘fairly some effort’, or ‘a lot of effort’. The mean response
per measure (304 users, rating 25 measures each) is listed in the Appendix, Table 5. We observed a moderate to strong
correlation between a measure’s perceived effort and a its behavioral costs: 𝑟 (134) = 0.59, 𝑝 < 0.001.

3.2 ‘Saving Aid’ Recommender Study

Following our pre-study, we set up an online user study in collaboration with a Dutch energy supplier (i.e., Eneco). We
compared four different recommender interfaces, of which three depicted social norms alongside energy-saving advice
and one the kWh savings values.
Manuscript submitted to ACM
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Fig. 2. Excerpt from the email template sent to customers of Dutch energy supplier Eneco who owned a smart thermostat.

3.2.1 Participants. Members of a consumer panel at Eneco were invited to use our ‘Saving Aid’ recommender system
to find and select appropriate energy-saving measures to take in the households. Panel members, which were all smart
thermostat owners, were sent a formal email invitation, of which an English translation is depicted in Figure 2. This
panel was considered a good target group for our study, as they were able the improve energy efficiency in one’s
household beyond simple behavioral curtailment, as they were predominantly homeowners.

In total, 217 participants used our ‘Saving Aid’ and filled out the evaluation questionnaire. However, we excluded ten
participants for either completing the study in less than three minutes, indicating to not trust the website, or showing
no variation in the evaluation questionnaire. Eventually, we considered a sample of 207 participants (𝑀 = 53.5 years,
𝑆𝐷 = 14.0) that comprised predominantly males (87%). Among our participants, only 26.6% owned the home they lived
in, while the majority lived in a town house (58.5%).

3.2.2 Procedure. To estimate each user’s attitude, we randomly sampled 13 energy-saving measures from across the
behavioral costs scale. These were presented sequentially to users, who indicated whether they performed them or
not (‘yes’ or ‘no’). Subsequently, we inquired on the user’s housing situation to filter irrelevant measures from the
recommendation list.

Afterwards, we presented each user a list of nine energy-saving recommendations, whose behavioral costs were
tailored towards the user’s estimated energy-saving attitude (𝜃 ≈ 𝛿). In addition, the measures were ordered in terms of
their estimated kWh savings. Figure 3 depicts the top-2 measures of such a list, presenting a measure’s name, a short
description, a score or percentage, and a (norm) explanation. Recommendations were sampled between the adoption
probabilities of 18% to 75%, which ranged from −1.5 to +1 logit in terms of the attitude-behavioral costs difference.
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Fig. 3. Our ‘Saving Aid’ energy recommender interface (NL: ‘Besparingshulp.nl’), translated to English. Depicted are the name and a
short description of the top-2 recommendations in our interface (e.g., at the top: ‘Install low-flow showerheads’), out of a total of
nine recommendations. Users could select any number of measures they would like to perform, by clicking ‘I will do this’. Measures
are sorted from high to low kWh savings. On the left, users could hover a measure’s image to inspect additional attributes: kWh
savings (scaled from 1 to 5 light bulbs), the annual savings (in e ), investment costs (in e ), payback period (from ‘less than a month’
to ‘never’), effort, and behavioral frequency. Depending on the condition, the numbers on the right either show a score or a norm
percentage. Depicted here is a ‘Similar’ norm.

We asked users to select any number of recommended measures that they wished to perform. Users could hover for
‘more info’ to see other commonly used attributes of an energy-saving measure, such as its frequency and kWh savings.
Figure 3 portrays this on the left-hand side of the top measure.

After interacting with our ‘Saving Aid’ interface, we inquired on the user’s subjective evaluation of the system. To
this end, users were presented statements on 7-point Likert scales. Finally, users could share demographic details and
disclose their email address to receive information on chosen measures.

3.2.3 Research Design. The presented score and explanation depicted alongside each measure in the list is subject
to four between-subject conditions. In line with Goldstein et al. [25], we compared three norm explanations to an
environmental baseline:

(1) ‘Savings’ score (baseline): We presented a ‘Saving Score’ of 0 to 100, where 100 represented the highest kWh
savings in the list.
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(2) ‘Global’ norm: The adoption rate of measures on the scale, which ranged from 2% to 98%, explained as: “XX% of
other customers do this.”

(3) ‘Similar’ norm: The user’s adoption probability (between 18% and 75%), explained as: “XX% of other customers
who perform the same measures as you, do this.”

(4) ‘Experienced’ norm: The adoption probability for an attitude 1 logit above the current user, which fell between
37.8% and 88%. It was explained as: “XX% of customers who perform more measures than you, perform this
measure.”

3.3 Measures

3.3.1 Choice Variables. We examined a user’s choice behavior through two analyses. First, we considered the total
number of chosen measures by a user per condition [RQ1], as well as the amount of chosen kWh savings per measure
and the average behavioral cost level of chosen measures (i.e., attitude-cost difference). Second, we predicted the
likelihood that a specific measure was chosen in each condition using on the presented norm scores [RQ2]. In the same
model, we considered a measure’s perceived effort, as well as explored possible interaction effects.

3.3.2 Attributes & Characteristics. To address our research questions, we dichotomized each user’s energy-saving
attitude to discern between users with weak and strong attitudes. Figure 4 depicts the distribution of attitudinal strengths
in our sample, which were estimated at discrete levels. In previous studies that used a Rasch scale, a cut-off would be
placed at 𝜃 = 0 [9], but this would lead to very uneven groups in the current study (𝑁𝑤𝑒𝑎𝑘 = 48, vs 𝑁𝑠𝑡𝑟𝑜𝑛𝑔 = 159).
However, a median or mean split (𝑀𝑒𝑑𝑖𝑎𝑛 = 0.42, 𝑀 = 0.52, 𝑆𝐷 = 0.79) would neither lead to balanced groups2, nor
would it properly differentiate between weak and strong attitudes. To balance representativeness both factors, we
instead placed the cut-off at 𝜃 ≤ 0.25 (see Figure 4), creating a group of 82 users with a weak attitude and a group of
125 users with a strong attitude.

Other attributes are presented in our ‘Saving Aid’ interface (cf. Figure 3). We used the presented score as a continuous
measure (‘Savings Score’ or norm %’s) to assess its impact on the probability that a measure was chosen (RQ2). Other
attributes could be inspected in the interface by hovering an energy-saving measure. From these, we included a measure’s
perceived effort in our analyses, as we examined whether social norms could boost the adoption of effortul measures.

3.3.3 User Evaluation Aspects. To examine whether users evaluated recommender interfaces that depicted social norms
more positively than non-social one (RQ3), we inquired on different user evaluation aspects. After interacting with
the ‘Saving Aid’, users were presented questionnaire items on a 7-point Likert scale about the Perceived Feasibility of
the presented recommendations, their Perceived Support from the system, and the user’s satisfaction with the chosen
measures (i.e., Choice Satisfaction). All items were based on earlier research of Knijnenburg and Willemsen [37], and
were eventually submitted to a confirmatory factor analysis, as part of a Structural Equation Model. The results are
described in Table 4, and discussed in the results section.

We also included two user characteristics in our user evaluation analysis. Besides discerning between users with
weak and strong energy-saving attitudes, we also inquired on a user’s environmental concern, scoring all 15 items of
the revised NEP scale [18] on a 7-point Likert scale. We found that the scale had an acceptable internal consistency
(𝛼 = .78). However the path model was built using only 6 items to optimize the fit of the Structural Equation Model.

2The group of users that was estimated to have an attitude 𝜃 of 0.42 was rather large: 25.6%. For obvious reasons, labeling this group as having a ‘weak’
or ‘strong’ attitude would lead to unbalanced groups either way.
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4 RESULTS

We investigated to what extent social norms affected user choices and evaluation of an attitude-tailored list of energy-
saving measures, compared our kWh savings baseline. After presenting manipulation checks, we first examined the
total number of choices, chosen kWh savings, and average chosen behavioral cost level across our normative conditions
to the baseline (RQ1). Second, we predicted whether the likelihood that a measure was chosen from a recommendation
list was affected by the presented norm score, compared to the effects in the baseline (RQ2). Third, we investigated
whether the different normative messages affected a user’s perception of the system (RQ3).

4.1 Manipulation Checks

4.1.1 Presented Norm Scores. We examined whether the presented scores and percentages were in line with our
intended manipulations. As outlined in Table 1, we intended ‘Global’ norms to yield higher norm %’s for users with
weak attitudes than in the ‘Similar’ condition, and vice versa for users with strong attitudes. Moreover, we intended
‘Similar’ norms to have a median score around 50%, while the median score for ‘Experienced’ norms was designed to
fall around 75%, across all attitudinal strengths.

Figure 5 depicts the distribution of presented scores per condition, across weak (in blue) and strong (in red) attitudes.
It shows that the Savings Score roughly captured all possible scores with a median score of 60, while the normative
conditions had narrower distributions, which was expected. However, it shows only a minor difference in presented
median scores between ‘Global’ norms (53%) and ‘Similar’ norms (49%) for users with weak attitudes, which was much

Fig. 4. Histogram depicting the distribution of energy-saving attitudes in our sample. It also depicts the cut-off between weak and
strong energy-saving attitudes, placed at 𝜃 = 0.25.
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Fig. 5. Box plot of the presented scores or norm %’s in our recommender interface, across conditions and attitudinal strength,
presented as a manipulation check. Scores presented to users with weak attitudes are depicted in blue, scores presented to users
with strong attitudes in red. As intended, the Savings condition included all scores, while the distributions were narrower and more
selective in other conditions.

smaller than our intended manipulation (72% vs. 50%). This made it less likely for any effect to surface between ‘Global’
and ‘Similar’ norms for users with a weak attitude. In contrast, the difference in median scores for strong attitudes
between ‘Global’ (39%) and ‘Similar’ (58%) was consistent with our intended manipulation (30% vs. 50%).

Furthermore, Figure 5 shows there were small differences in the presented median scores between weak and strong
attitudes in the ‘Similar’ (𝑊𝑒𝑎𝑘 = 49% vs 𝑆𝑡𝑟𝑜𝑛𝑔 = 58%) and ‘Experienced’ conditions (𝑊𝑒𝑎𝑘 = 70% vs 𝑆𝑡𝑟𝑜𝑛𝑔 = 78%).
Nonetheless, the difference between the median scores of ‘Similar’ (53%) and ‘Experienced’ (75%) was in line with our
intended manipulation.

4.1.2 Validation of the used Rasch construct. To validate the representativeness of the Rasch scale used for this study
(cf. Table 5), we inferred a new Rasch construct based on data collected in this study. Without reporting detailed fit
statistics, we found the Rasch scale to have an adequate model fit (item reliability 𝛼 = 0.85; person reliability 𝛼 = 0.69).
We compared the behavioral cost levels of the new construct to the one used in the current study, performing a
pairwise correlation analysis. In spite of both research populations being rather different, it revealed a strong correlation:
𝑟 (134) = 0.82, 𝑝 < 0.001, which showed that the two constructs were comparable and had to a large extent a similar
order. We only found that a few measures would significantly shift in terms of their behavioral cost level. For example,
because all users in the current sample were smart thermostat owners, the measure ‘install a centralized temperature
system with zone controls & thermostats’ changed from +3.33 to −2.95 logit.

4.2 Overall Choice Behavior (RQ1)

4.2.1 Total Number of Chosen Measures. We investigated whether the depiction of descriptive norms increased the
number of energy-efficient choices, compared to our non-social baseline (RQ1). We first addressed this question through
a multilevel logistic regression analysis to estimate whether the likelihood that a measure was chosen. Table 3, Model
1 (reported in Section 4.3) examined whether a measure was more likely to be chosen in each normative condition,

Manuscript submitted to ACM



677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

14 Starke et al.

Fig. 6. Total number of chosen measures, per condition and attitude strength. Error bars are 1 𝑆.𝐸.

compared to the the baseline. We found no differences between the normative conditions and the Saving Score baseline
(all 𝑝-values > 0.05): not for ‘Global’ norms (𝑂𝑅 = .83, 𝑆.𝐸. = .33), neither for ‘Similar’ norms (𝑂𝑅 = 1.17, 𝑆.𝐸. = .46),
and nor for ‘Experienced’ norms (𝑂𝑅 = 1.02, 𝑆.𝐸. = .39).

This result is illustrated in Figure 6. It depicts small, but non-significant differences in the number of chosen measures
between the Savings baseline and each norm condition, indicating that social norms did not lead to changes between
conditions. Based on the norm scores, we expected that users with a weak attitude would choose more measures when
facing ‘Global’ norms compared to ‘Similar’ norms, and vice versa for users with a strong attitude. Although Figure 6
depicts a small difference between the two types, Kruskal-Wallis tests of ranks revealed that these were not significant:
not between ‘Global’ and ‘Similar’ norms for users with a weak attitude: 𝐻 (1, 36) = 0.267, 𝑝 = 0.61, nor for users
with a strong attitude: 𝐻 (1, 65) = 0.45, 𝑝 = 0.50. In addition, based on the norm scores, we expected that depicting
‘Experienced’ norms would lead to more choices than presenting ‘Similar’ norms, but we found no significant difference
between the two: 𝐻 (1, 105) = 0.028, 𝑝 = 0.87.

Fig. 7. Box plot of the log transformed chosen kWh savings per measure, divided across conditions, as well as between weak (in blue)
and strong (in red) attitudinal strength.
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4.2.2 Chosen kWh Savings per Measure. We further expected that social norms could boost the overall kWh savings
chosen. We present our results in Figure 7 and compared differences in chosen kWh savings per measure, across
conditions and attitudinal strengths. Kruskal-Wallis tests provided no evidence for differences in chosen kWh savings
between the baseline (𝑀 = 401, 𝑆𝐷 = 843) and the normative conditions (𝑀 = 193, 𝑆𝐷 = 393); not for ‘Global’
norms: 𝐻 (1, 100) = 2.21, 𝑝 = 0.14; neither for ‘Similar’ norms: 𝐻 (1, 97) = 0.65, 𝑝 = 0.42; nor for ‘Experienced’ norms:
𝐻 (1, 103) = 0.79, 𝑝 = 0.37. As we neither found differences across different attitudinal strengths, this suggested that our
normative condition did not increase overall kWhs saved, as indicated by a user’s choice behavior.

4.2.3 Behavioral Costs. Finally, we examined whether the behavioral cost levels of chosen measures differed across
conditions and attitudes (i.e., weak vs strong). We used the difference between a user’s attitude and the behavioral
costs of a chosen measure: the ‘attitude-cost difference’. A positive difference would indicate that users had chosen
relatively challenging measures for their attitude level, while a negative difference difference would suggest that users
had selected relatively easy ones. We expected that social norms might be more effective to persuade users to select
challenging measures, particularly for users with a strong energy-saving attitude, leading to a positive attitude-cost
difference.

Table 2 presents two multilevel linear regression models, clustered at the user level. Model 1 examined whether this
led to different choices in the norm conditions, compared to the Saving Score baseline. We found that both the ‘Global’
and ‘Similar’ norm conditions positively affected the chosen ‘attitude - behavioral cost’ difference of chosen measures,
compared to choices in the baseline: 𝛽 = 0.29, 𝑝 < 0.01, for the Global norm condition; 𝛽 = 0.22, 𝑝 < 0.05, for Similar
norms. This suggested that users in those conditions were more likely to choose measures with higher behavioral costs,
which were located ‘further up’ the Rasch scale. In contrast, such an effect was not observed for the ‘Experienced’
condition.

Table 2. Multilevel linear regression models predicting the relative behavioral costs level (difference between attitude - behavioral
costs) of chosen measures, clustered at the user level. Energy-saving attitude discerns between weak and strong, norm condition
dummies are compared to the Saving Score baseline. 𝛽 represents the regression coefficient. ∗∗∗𝑝 < 0.001, ∗∗𝑝 < 0.01, ∗𝑝 < 0.05.

Model 1 Model 2
𝛽 (𝑆.𝐸.) 𝛽 (𝑆.𝐸.)

Global Condition .29 (.10)∗∗ .22 (.11)∗
Similar Condition .22 (.10)∗ .071 (.10)
Experienced Condition .17 (.099) .14 (.092)

Energy-saving attitude .25 (.12)∗
Attitude X Global .0032 (.15)
Attitude X Similar .071 (.14)
Attitude X Experienced -.0068 (.14)

Constant -.082 (0.72) -.14 (.069)∗
𝑅2 (overall) .029∗ .12∗∗∗

Table 2, Model 2 examines whether the effects of Model 1 were affected by a user’s energy-saving attitude. We found
that users with strong energy-saving attitudes were more likely to choose measures with relatively higher behavioral
costs, across all conditions: 𝛽 = 0.25, 𝑝 < 0.05. The observed effects of the presented norms in Model 1 were reduced in
Model 2, as only Global norms still positively affected the chosen behavioral cost level (𝑝 < 0.05). Moreover, we neither
found interaction effects between attitude and the presented norm interface.
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Fig. 8. Mean relative behavioral cost level of chosen measures (i.e., Attitude – Behavioral Costs), divided per condition and attitudinal
strength.

To better understand the results reported in Table 2, please refer to Figure 8. It depicts how users with stronger
energy-saving attitudes had also chosen measures with with behavioral costs above their own attitude, yielding a
positive ‘attitude-cost difference’. In contrast, users with weak attitude had chosen ‘below’ their own attitude in all
conditions. Regarding specific conditions, the average behavioral cost level of chosen measures in the ‘Global’ (𝑀 = 0.24)
and ‘Similar’ (𝑀 = 0.13) conditions was higher than in the baseline (𝑀 = −.075). In addition to the models reported in
Table 2, we also examined whether demographical factors (i.e., age, income, etc.) and housing characteristics affected
the current results, but we found no significant effects.

4.2.4 Conclusion. Overall, we found that the use of descriptive norms did not persuade users to choose more energy-
saving measures in total, compared to our kWh savings baseline. Nor did we observe a change in the overall kWh savings
selected by users. It seemed that adding normative explanations to a personalized list of energy-saving recommendations
did not boost the overall choice behavior in terms of sustainability. Instead of main effects, it seemed that more ‘within
list’ effects had occurred (cf. Section 4.3).

We did find overall chosen in terms of the relative difficulty of chosen measures for some normative conditions, in
particular ‘Global’ Norms. This suggested that normative explanations, or other social explanations for that matter,
are more successful in persuading users to select ‘challenging’ measures, compared to a factual explanation (i.e. kWh
savings). Moreover, we found a main effect of energy-saving attitude on the behavioral cost level of chosen measures,
suggesting that more experienced users could be presented measures with relatively high behavioral costs compared to
their attitudinal strength, while those with a weaker attitude should be presented relatively easy measures.

4.3 Choice Behavior for Individual Measures (RQ2)

We further investigated whether social norms affected choices for individual measures, compared to a non-social
baseline (RQ2). The results of this analysis are reported in Table 3. Model 2 addresses whether measures with higher
norm scores were more likely to be selected in our interface, which we expected. It examined whether the presented
Manuscript submitted to ACM
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Table 3. Three multilevel logistic regression analyses predicting the choice probability per measure, clustered at the user level. The
‘Main Effects’ examine whether any measure was more likely to be chosen in a norm condition, compared to the baseline, effectively
comparing the total number of measures chosen (Model 1). The ‘Within List’ effects examined for each measure whether the likelihood
it was chosen was affected by the presented norm score (Models 2+3) and its perceived effort (Model 3), also comparing the effect
in each norm condition to the baseline. Reported are odds ratios (𝑂𝑅 < 1 implies a negative effect,𝑂𝑅 > 1 a positive effect) and
standard errors (𝑆.𝐸.). ∗∗∗𝑝 < 0.001, ∗∗𝑝 < 0.01, ∗𝑝 < 0.05.

Model 1 Model 2 Model 3
𝑂𝑅 (𝑆.𝐸.) 𝑂𝑅 (𝑆.𝐸.) 𝑂𝑅 (𝑆.𝐸.)

Main Effects (RQ1)
Global Condition 0.83 (.33) 0.82 (.35) 0.71 (.29)
Similar Condition 1.17 (.46) 1.20 (.53) 1.02 (.42)
Experienced Condition 1.02 (.39) 1.06 (.63) 0.88 (.35)

Within list (RQ2)
Interface score 0.78 (.32) 1.19 (.56)
Score X Global 3.80 (2.22)∗ 2.43 (1.58)
Score X Similar 2.26 (1.27) 1.19 (.75)
Score X Experienced 2.99 (1.66)∗ 1.46 (.90)

Perceived effort 0.68 (.21)
Effort X Global 1.42 (.56)
Effort X Similar 1.03 (.41)
Effort X Experienced 0.70 (.28)

Score X Effort 0.15 (.14)∗
Score X Effort X Global 6.29 (7.59)
Score X Effort X Similar 6.46 (7.68)
Score X Effort X Experienced 12.52 (14.93)∗

Constant -1.58 (.28)∗∗∗ 0.20 (.059)∗∗∗ 0.23 (.068)∗∗∗

norm score affected the likelihood that a measure was chosen, compared per norm condition (e.g., Score X Global) to
the effect in the baseline. Second, in addition to the norm score, Table 3, Model 3 considers a measure’s perceived effort
(‘Effort’) and the interaction between the two (‘Score X Effort’) on the likelihood that a measure is chosen.

4.3.1 Norm Percentages. Table 3, Model 2 shows, for the baseline, that depicting higher Savings Scores did not affect
the probability that a measure was chosen: 𝑂𝑅 = 0.78, 𝑝 = 0.533. This pointed out that higher kWh savings did not
persuade users to choose a measure. Figure 9 illustrates this as well, as the proportion of chosen measures (depicted in
green) did not differ across kWh Savings scores.

In line with our expectations, Table 3, Model 2 provides evidence that showing higher norm scores increased the
likelihood that a measure was chosen, compared to the effect of presenting high kWh savings. The effect of Score in
the ‘Global’ (𝑂𝑅 = 3.80, 𝑝 = 0.022) and ‘Experienced’ conditions (𝑂𝑅 = 2.99, 𝑝 = 0.049) increased the likelihood that
a measure was chosen, while no such effect was found for Score in the ‘Similar’ condition (𝑂𝑅 = 2.26, 𝑝 = 0.15), all
compared to effect in the baseline. This suggested that high ‘Global’ and ‘Experienced’ norm percentages were more
likely to persuade a user to choose measure, compared to presenting a measure’s kWh savings. While we could not
make such assertions for ‘Similar’ norms, the effect points in a similar direction.

We explored what norm percentage cohorts were more likely to persuade a user to choose a measure. Figure 10
shows two levels at which the proportion of chosen measures seemed to increase: around 20% (an increase from 0.07 to
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Fig. 9. Depicted in green are the proportions of chosen measures
in the baseline condition (among those presented), per Savings
Score category.

Fig. 10. Proportion of chosen measures in the normative condi-
tions, per norm percentage category. Data is averaged across all
categories (Global, Similar, and Experienced).

0.23) and at 60% (an increase from 0.24 to 0.29). This suggested that normative messages below 20% discouraged users
from choosing them, while measures that depicted norm percentages over 60% seemed the most likely to be chosen,
which was most common among ‘Experienced’ norms.

4.3.2 Perceived Effort. To expand the results found in Table 3 Model 2, we also analyzed a model that included the
presented norm score, a measure’s perceived effort, and the interaction between the two. We expected that presenting
high norm scores in our interface would overcome a measure’s perceived effort level, increasing the likelihood that a
measure was chosen.

Table 3, Model 3 reports the results. We observed no significant within-list effects for score, nor were significant
effects observed for perceived effort between the norm conditions and the baseline (𝑝 > 0.05 for all effects). Model 3 did
reveal interesting interaction effects. We found that an interaction between score and effort in the baseline negatively
affected the likelihood that a measure was chosen: 𝑂𝑅 = 0.15, 𝑝 = 0.041. This suggested that measures with high kWh
savings were more likely to be chosen if they had low levels of effort, while this likelihood decreased if a measure had
high levels of perceived effort. The latter, high effort and high savings, was however far more common among the set of
energy-saving measures used in this study.

We examined further interaction effects between score and perceived effort for the normative conditions. Table 3,
Model 3 reveals a non-significant difference in choice likelihood between the baseline and both the ‘Global’ and ‘Similar’
conditions (𝑂𝑅 ≈ 6.3, 𝑝 > 0.05). Even though this showed that high norm scores did not significantly persuade users to
choose more effortful measures, the OR was comparable to that of the baseline, suggesting that the negative baseline
effect was reduced (i.e. users only choosing measures with high kWh savings if effort was low). Furthermore, we did
find a significant increase in the choice likelihood for the ‘Experienced’ condition: 𝑂𝑅 = 12.52, 𝑝 = 0.034, suggesting
that high norm percentages, explained in terms of experienced peers, increased the probability that an effortful measure
was chosen, rather than those with low effort. The odds ratio of this positive effect was two times larger than the
negative effect in the baseline, showing that higher ‘Experienced’ norm scores could persuade users to choose effortful
measures.
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4.3.3 Conclusion. We examined whether depicting social norms in an energy recommender interface also what
measures were chosen from a list of recommendations (RQ2). We found that recommendations were more likely to be
chosen if they were presented alongside high norm scores or percentages, suggesting that they stand out from a list
of tailored measures. In particular, it seemed that presenting ‘Experienced’ norms alongside effortful measures could
increase the likelihood that they were chosen, while explaining measures in terms of their kWh savings led users to
choose relatively low-effort measures. Although the previous section did not report any changes in the overall choice
behavior, the current section showed that social norms in a personalized context were capable of promoting specific
measures in a recommendation list.

4.4 User Evaluation of the Saving Aid (RQ3)

Finally, we examined whether perceptions of the recommender system differed between conditions, and whether this
affected, in turn, choice behavior and satisfaction (RQ3). We organized the objective constructs, subjective constructs,
and relevant interactions into a path model using Structural Equation Modeling in MPlus [37, 43]. To do so, we first
performed a confirmatory factor analysis, after which we tested a fully saturated model and performed stepwise removal
of non-significant relations.

4.4.1 Confirmatory Factor Analysis. We submitted all items in our evaluation questionnaire, described in Table 4, to a
confirmatory factor analysis. We had to drop perceived support for our subsequent structural equation model (SEM)
analysis, as it could not be reliably discerned from the choice satisfaction aspect, violating divergent validity [37]. Both
the feasibility (𝛼 = .72) and choice satisfaction aspects (𝛼 = .87) had an acceptable internal consistency and met the
standards for convergence validity (𝐴𝑉𝐸 > 0.5), as prescribed by [37].

4.4.2 Structural Equation Model. Figure 11 depicts the final path model of Structural Equation Model. It had excellent
fit statistics, indicating there was little unexplained variance: 𝜒2 (63) = 71.548, 𝑝 = 0.76, 𝐶𝐹𝐼 = 1.000, 𝑇𝐿𝐼 = 1.006,
𝑅𝑀𝑆𝐸𝐴 = 0.000, 90%-𝐶𝐼 : [0.000,0.028]. The final model met the prescribed guidelines for discriminant validity [37].

Table 4. Results of the confirmatory factor analysis on user experience. Items without loading were removed from the final model.
Perceived Support was omitted due to high cross-loadings with Choice Satisfaction [37]. AVE denotes the average variance explained
by an aspect, 𝛼 represents Cronbach’s Alpha.

Aspect Item Loading
Perceived Feasibility The recommended measures are hard to perform. −.808

I do not have the possibility to perform the recommended measures. −.566
𝐴𝑉𝐸 = .54 The recommended measures are applicable in my home environment.
𝛼 = .72 It takes little effort to perform the recommended measures. .738

Perceived Support I want to use the Saving Aid more often.
The Saving Aid was useless.
I make better choices using the Saving Aid.
The Saving Aid has made me more aware of my energy behavior.
I would recommend the Saving Aid to others.
The Saving Aid was useful to find appropriate measures.
I could easily choose measures with the Saving Aid.

Choice Satisfaction I like the measure I have chosen. .690
I think I chose the best measures from the list. .659

𝐴𝑉𝐸 = .67 I would enjoy performing the chosen measures. .746
𝛼 = .87 The chose measures exactly fit my preferences. .820

Manuscript submitted to ACM



989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

20 Starke et al.

Fig. 11. Structural Equation Model (SEM). Numbers on the arrows represent the 𝛽-coefficients, standard errors are between brackets.
Effects between subjective constructs are standardized and resemble correlations. ∗∗∗𝑝 < 0.001, ∗∗𝑝 < 0.01, ∗𝑝 < 0.05.

4.4.3 Perceived Feasibility and Choice Behavior. We expected that the different social norm interfaces would be perceived
as more feasible than the kWh savings baseline. Figure 4 partially confirms this, as both the ‘Global’ norm (𝛽 = 1.04)
and ‘Similar’ norm conditions (𝛽 = 0.693) positively affected a recommendation list’s perceived feasibility compared
to the baseline. Moreover, the interaction between the user’s energy-saving attitude and a ‘Global’ norm on a user’s
perceived feasibility (𝛽 = 0.937) matched our expectations that the user’s attitudinal strength would determine how the
‘Global’ norms would be evaluated.

In contrast, no such effect on feasibility was observed for ‘Experienced’ norms (𝛽 = −.286, 𝑝 = .310; not depicted
in Figure 11). Although the results in Table 3 suggested that ‘Experienced’ norms convinced users to choose effortful
measures, they did not increase the perceived feasibility of the presented measures altogether.

In turn, Figure 11 shows that perceived feasibility positively affected the number of measures chosen by a user. A
bootstrapped test of indirect effects from the ‘Global’ condition towards the number of chosen measures was significant:
𝛽 = 0.240, 95%-𝐶𝐼 : [0.020, 0.460], 𝑝 = 0.033, while the effect from the ‘Similar’ condition to the number of chosen
measures was not significant: 𝛽 = 0.160, 95%-𝐶𝐼 : [−0.009, 0.329], 𝑝 = 0.064.

4.4.4 Choice Satisfaction. The SEM model in Figure 11 shows two positive effects on choice satisfaction: perceived
feasibility (𝛽 = 0.330) and the number of chosen measures (𝛽 = 0.305). This suggested that choosing feasible measures,
as well as more measures positively affected how they were evaluated. In terms of indirect effects, the path from ‘Global’
Manuscript submitted to ACM
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norms to choice satisfaction (𝛽 = 0.417, 95%-𝐶𝐼 : [0.041, 0.793], 𝑝 = 0.030), as well as the path from the ‘Similar’ norm
condition (𝛽 = 0.278, 95%-𝐶𝐼 : [0.034,0.521], 𝑝 = 0.026) was significant, showing that the positive effects of these norms
on satisfaction were mediated by feasibility.

Besides the interface effects, we found that the mean presented recommendation list score positively affected the
list’s feasibility perception (𝛽 = 0.034). This confirmed that higher scores, regardless of the source (i.e., kWh savings or
norm), were related to higher levels of feasibility. Figure 11 also depicts that a user’s environmental concern positively
affected perceived feasibility (𝛽 = 0.225), showing that users who attributed greater concern towards their role in
protecting the environment, indicated that the recommended measures were more feasible to perform.

4.4.5 Conclusion. We examined whether user perceptions of recommendations were affected by the depiction of
social norms (RQ3). The path model showed that ‘Global’ and ‘Similar’ norms increased the perceived feasibility of
recommendations, relative to the Savings baseline, while no such effect was found for ‘Experienced’. This suggested
that the effectiveness of descriptive norms did not simply boil down to high percentages, but that the advice source
played a role, possibly through similarity rather than expertise.

Furthermore, our path model shows that higher levels of feasibility increased both the number of chosen measures, as
well as choice satisfaction. Our tests of indirect effects confirmed that most of the paths from the ‘Global’ and ‘Similar’
norms to both the ‘number of chosen measures’ and choice satisfaction were mediated by feasibility. This indicated that
explaining energy-saving recommendations in terms of normative messages affected how users perceived them (i.e.
making them seem more feasible to perform) and, in turn, increased the number of measures that users had selected
(i.e., a proxy for behavioral intention), as well as their choice satisfaction levels.

5 DISCUSSION

We have investigated to what extent different social norm nudges affect choice behavior in an energy recommender
system. We have translated the findings of a well-known social psychology study by Goldstein et al. [25], which used
descriptive norms to promote towel re-use, to an HCI context. Specifically, we have investigated whether the merits
of descriptive norms still apply in a choice environment where a more diverse, yet personalized set of energy-saving
measures is presented.

Our results show that normative explanations affect user decision-making within lists of tailored recommendations,
in the context of energy conservation. Although normative messages have not lead to more energy-efficient choices in
total, as investigated in [RQ1], we find that presenting normative explanations, as well as comparatively high norm
scores can boost the adoption of specific energy-saving measures (RQ2). Moreover, the depiction of social norms also
positively affects a user’s evaluation of a recommender system (RQ3), in terms of the perceived feasibility and choice
satisfaction. These findings underline that social proof [21] and implied norms can act as persuasive nudges, both
through majority preferences (in this study: the presented norm percentages), as well as specific peers (in this study:
the different norm sources) – even in the context of personalized advice. Such norms are found to be more effective
than presenting additional information about key attributes of the recommended items (in this study: kWh savings).
Moreover, social norms also affect what types of measures are chosen, in terms of relevant energy-saving attributes: a
measure’s behavioral costs (i.e., execution difficulty) and its perceived effort.

More generally, we show that person-dependent nudges (in our case: social norms) are beneficial to contexts where
the advice itself is also personalized. For nudging researchers (i.e., behavioral economists [57]), this implies that it
could be fruitful to move beyond one-size-fits-all persuasion, for its effectiveness might be lost when the content of an
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intervention is aligned with a user’s preferences [35, 54]. For recommender system scholars, the merit of our study lies
in the effectiveness of personalized nudges in recommender interfaces to shift user preferences. This is particularly
important to recommender domains where self-actualization and behavioral goals play a role [20], as users in those
domains often consider what their peers are doing [13, 39]. Earlier approaches in behavioral recommender domains (i.e.,
energy and health) show that is hard for users to seek behavioral change, as most algorithms reinforce their current
preferences [48, 53]. The use of nudges, such as social norms, could alleviate those issues.

5.1 Influence of Study Design

We further discuss the study results in more detail, by first examining the influence of our study design. Contrasting
with the findings in Goldstein et al. [25], the use of descriptive norms did not lead to an overall increase in the total
number of chosen energy-saving measures, compared to a baseline that emphasized kWh savings (RQ1). We discuss a
number of possible causes for this different outcome through our study design.

For one, the decision contexts are different, in terms of the number of presented norms and measures. The observed
behavior in Goldstein et al. [25] is rather straightforward, as it only promotes towel re-use by means of a door hanger
in a hotel room. In contrast, our study comprises a set of attitude-tailored energy-saving measures in a web shop study,
presenting multiple descriptive norms simultaneously. While the change from a hotel room to a web-based interface
might not have impacted the results, the fact that our recommender has simultaneously presented multiple measures
with different norm percentages could have led users to make more comparative judgments. For example, users could
have been influenced by the presented interface score rather than the norm source. This is supported by our findings
that, in the ‘Global’ and ‘Similar’ norm conditions, measures were more likely to be chosen from recommendation lists
if they had a comparatively high score, while revealing no differences in the main effect between norm conditions.

The results in our study clearly show that, contrary to what has been suggested in a meta-review [1], simply
generalizing the effectiveness of descriptive norms for a simple, one-time behavior (e.g., towel re-use) to all types
of measures is not a representative statement. Hence, potential adopters of a norm-based approach should seriously
consider the nature of the behavior that is being promoted, whether it is energy conservation or other behaviors in the
recommender domain that involve effort, such as healthy eating [48, 56]. While the effects of descriptive norms have
been rather consistent in both movie and social recommender systems [12, 26, 49], these are domains distinct from
energy and health, as their behaviors (e.g., clicks) face few behavioral thresholds (e.g., no financial costs).

Finally, we wish to emphasize that our study has used a strict baseline. By framing treatment energy-saving measures
in terms of their energy-saving measures, we have attempted to reflect the study design of Goldstein et al. [25], rather
than adhering to the more traditional social psychology study design that employs a no-treatment control group
[1]. Hence, we have evaluated the effectiveness of our normative manipulations critically, which is consistent with
recommender system research, where novel algorithms and interfaces are benchmarked against commercial applications
or state-of-the-art technology [37].

5.2 Differences in Norms

Besides differences in choice behavior as a result of the presented norm percentages, we also discuss to what extent
the type of descriptive norms played a role. Goldstein et al. [25] propose that ‘provincial’ norms (i.e. ‘local’ norms as
‘Similar’ and ‘Experienced’) are more effective in changing user behavior than the more ‘Global’ norms, for they share
very specific and context-rich characteristics with the recipient of an environmental appeal. While each normative
condition in this study leverages some similarity with the user, the ‘Global’ and ‘Similar’ norms are arguably the
Manuscript submitted to ACM
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most ‘provincial’, as they specifically emphasize the similarities with the user. In contrast, the ‘Experienced’ norm also
emphasizes a difference by pointing out that other customers ‘performed more measures than [the user]’.

Nonetheless, our path model shows effects consistent with a context-rich, provincial norm explanation. The ‘Global’
and ‘Similar’ norm conditions produce higher levels of perceived feasibility compared to the Savings baseline, while
no such effect is found for the ‘Experienced’ condition. That analysis suggests that the increase in feasibility can be
attributed to the norm source rather than the score, as the ‘Experienced’ norm presented the highest percentages. This
would suggest that users are influenced by the principle of ‘similar others are doing it, therefore I can do this too’, a
more general heuristic for choice.

The relevance of this finding on feasibility lies in the indirect effects of ‘Global’ and ‘Similar’ norms on choice
satisfaction, which are mediated by feasibility. The use of such normative explanations has not only increased the
perceived feasibility of the recommended measures, but has also led to higher levels of choice satisfaction, compared to
users in the kWh Savings baseline. This increase in choice satisfaction might be important to ultimately spur behavioral
change, as it can, in turn, persuade users to re-use a recommender system at a later stage [37]. Moreover, previous
studies have shown that higher levels of choice satisfaction lead to a higher likelihood that users actually implement
chosen measures [54].

Although our ‘Experienced’ norms have not increased feasibility compared to the kWh savings baseline, our analysis
on choice in recommendation lists (cf. Table 3) reveals that it can boost preferences for high-effort measures. Unlike in
the baseline condition, where only low-effort measures are more likely to be chosen for high (kWh) Saving Scores,
higher ‘Experienced’ norm percentages seem to boost the selection of high-effort measures. This finding nicely shows
that personalized nudges rather than one-size-fits-all persuasion can improve the effectiveness of a recommender system,
as the persuasiveness of the ‘Experienced’ norm is specific to effortful measures.

5.3 Limitations

There might be some concerns about the use of self-reported behavior and choice as our behavioral indicators. Although
we are aware that self-report can be an inaccurate measurement method, it should have not had a large impact on the
study’s results, for we have only examined differences in choice behavior between randomly assigned conditions.

Furthermore, it is possible that some users have also chosen measures that they already performed. Particularly for
the so-called ‘curtailment’ measures (i.e., highly frequent behaviors [56] with no or little investment costs), users may
have chosen a certain measure to indicate that they want to ‘keep doing’ something, such as turning off the lights after
leaving a room. However, since we have mostly made comparison across condition, we expect the impact of this issue
to be small. If any, the amount of chosen kWh savings per measure could even be larger, for curtailment measures tend
to yield relatively low energy savings (cf. Table 5 and [17, 56]).

Finally, the used sample might not be representative for the broader population. The sample comprises energy
supplier customers with a smart thermostat, a group that happens to be composed of mostly males with relatively strong
energy-saving attitudes. Although this might limit the extent to which our results could be generalized to the broader
population, our randomly-assigned between-subject research design reduces the impact of using such a specific sample
population. Hence, we have examined the effectiveness of different personalized normative interfaces. Nonetheless,
it would be useful to replicate this research among a more representative population, to check whether our findings
on specific normative explanations still apply. Since the study has been conducted in the Netherlands, it is possible
that some of the energy-saving determinants (e.g., a measure’s perceived effort) show small variations across different
countries [56, 60].
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5.4 Future Directions

5.4.1 Mitigating Climate Change. Our findings show how current approaches to household energy conversation
promotion could be improved. Although some personalized campaigns are in place [56], relatively many are still
one-size-fits-all. For example, whereas many government information pages describe best practices, they could also
implement a tool similar to the ‘Saving Aid’ (cf. Figure 3), for which personalization brings forth relatively little costs in
terms of time. Furthermore, other interventions only focus on the use of social norms for a single metric or behavior
[25, 51, 55], for example by comparing the overall energy use of one household with its neighbors [4].

We expect that a combination of personalization and social norm interventions is likely improve the overall effective-
ness of energy-saving promotion, in terms of actual behavioral change. However, beyond energy-efficient choices, it
requires further research to understand to what extent it actually lowers the threshold of ‘getting started’. For example,
some people defer from making energy-saving choices, for they believe that they are the only engaging in it – the
so-called ‘sucker effect’ [27]. Follow-up research should make clear to what extent observing the behavior of others
alongside personalized advice, also in a recommender interface such as ours, could help to lower the thresholds to actual
energy-saving behavior. Previous research has provided evidence that users who evaluate a recommender interface
positively, are also much more likely to implement chosen measures [54].

5.4.2 Applications of Social Norms in Other Recommender Domains. The current paper has employed social norms
to support behavioral change for a user’s ‘better self’ [20]. While such persuasion techniques may be somewhat
paternalistic, it could be argued for the energy domain that the user ultimately benefits, due to a lower energy bill and a
positive environmental impact. However, the implications of this study also reach beyond the energy domain, for it
has been among the first to apply nudges in a personalized advice interface. For example, in food, most recommender
systems only focus on a user’s current eating habits [23, 42], while a user might have certain eating goals that can be
attained more easily by the use of social nudges [3, 52].

There are also domains in which norms can easily backfire or lead to arguably unethical situations. For instance,
in the context of news recommender systems [5], normative explanations of news articles could reinforce partisan
readership, if a user observes fellow democrats or conservatives consuming certain articles. Designers of recommender
interfaces should always consider whether it could be harmful to a user if she ‘follows the herd’, and to what extent
reinforcing such behavior through persuasive messaging exacerbates this.

Nonetheless, we wish to repeat that our study has focused on nudging within a personalized list of recommendations.
Since the presented items already fit a user, this might mitigate possible ‘herd behavior’. Moreover, the recommendation
algorithm used in this paper (i.e., based on the Rasch model) is less biased towards popular items [52], for it focuses
on the relation between the user and an item, based on its execution difficulty (i.e., behavioral costs) and novelty (i.e.,
execution probability) [56]. We think that this study can serve as a starting for various recommendation interfaces, in
which social explanations are presented alongside personalized items.
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A APPENDIX: RASCH SCALE OF ENERGY-SAVING MEASURES

Table 5. Tabulation of the Rasch scale of energy-saving measures 𝑖 . Described are names, behavioral cost levels (𝜃𝑖 ), the infit statistics
(MNSQ denotes Mean Square, ZSTD the standardized mean), kWh savings per year (i.e., ‘kWh’), and perceived effort (i.e., ‘EF’).

Infit statistics Attributes

𝑖 Measure 𝜃𝑖 MNSQ ZSTD kWh EF

1 Wash only full loads of laundry -3.09 1.07 0.31 30 1.73
2 Cook with pots & pans the same size as the heating

element
-2.78 0.84 -0.44 5 1.33

3 Turn off or down heating/cooling system when going
away for several days

-2.64 1.15 0.60 115 1.36

4 Repair leaky faucets -2.53 1.01 0.12 70 2.73
5 Cool hot food before putting it in the refrigerator -2.46 1.04 0.24 2 1.45
6 Cover pots & pans when cooking -2.4 1.01 0.13 5 1.25
7 Refrain from installing an air conditioner unless neces-

sary for safety
-2.38 0.85 -0.48 400 1.56

8 Do not leave your exhaust hood on when not in use -2.22 1.08 0.41 18 1.13
9 Run a dishwasher only when full, but not overloaded -2.17 0.92 -0.25 40 1.55
10 Take a shower instead of a bath -2.13 1.07 0.38 400 1.54
11 Install double-pane windows -2.00 0.90 -0.42 2500 3.44
12 Replace incandescent light bulbs with CFLs -1.96 0.96 -0.13 140 2.13
13 Hang/air dry laundry -1.94 1.21 1.11 290 2.22
14 Rake leaves with a garden rake instead of a leaf blower -1.94 1.15 0.74 36 2.71
15 Switch off the coffee machine completely -1.82 1.01 0.14 80 1.10
16 Install a laptop (instead of a desktop computer) -1.80 1.19 1.11 40 2.21
17 Use natural light in the daytime -1.75 0.87 -0.70 150 1.44
18 Decide what you want from the refrigerator before

opening the door
-1.72 0.87 -0.86 40 1.50

19 Refrain from using a screensaver -1.71 0.99 0.00 20 1.13
20 Wash laundry at a low(er) temperature -1.70 0.97 -0.10 105 1.30
21 Boil only as much water as you need -1.64 0.93 -0.35 30 1.50
22 Refrain from using an electric blanket -1.62 1.21 1.20 60 1.63
23 Use blankets (instead of a heater) -1.61 1.07 0.49 1000 1.58
24 Replace all incandescents with CFLs or LEDs -1.42 1.00 0.06 30 1.85
25 Turn off monitors when not in use -1.38 0.93 -0.52 45 1.57
26 Open blinds/curtains/drapes/shades at night when cool-

ing your home
-1.30 1.13 1.00 1000 1.92

27 Thaw food in a refrigerator or sink -1.28 1.00 0.05 10 1.71
28 Turn off bathroom exhaust fans 20minutes after bathing -1.28 0.95 -0.34 12 1.78
29 Dry only full loads of laundry -1.23 1.20 1.45 50 1.89
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Continuation of Table 5 𝜃𝑖 MNSQ ZSTD kWh EF

30 Switch off the dishwasher immediately after use -1.08 0.97 -0.19 70 1.44
31 Install a light switch at both ends of hallways -1.03 1.07 0.59 17 2.67
32 Air rooms for 20 minutes a day -1.03 0.93 -0.52 250 1.64
33 Turn off air conditioners in unoccupied rooms -1.00 0.90 -0.73 100 1.67
34 Towel/air dry hair instead of using electric hair dryer -0.94 1.20 1.71 30 1.22
35 Iron multiple garments in a row -0.93 0.92 -0.61 2 1.38
36 Set freezers to the warmest food-safe temperature (-

18°C)
-0.91 1.18 1.58 50 1.27

37 Cook with a frypan (instead of an oven) -0.85 1.09 0.76 250 2.07
38 Set the thermostat to 14°C at night during heating sea-

son
-0.80 0.95 -0.43 1250 1.89

39 Turn off computers when not in use -0.75 1.01 0.09 100 1.89
40 Set refrigerators to the warmest food-save temperature

(4°C)
-0.73 0.95 -0.37 50 1.00

41 Place refrigerator contents to allow for good air circula-
tion

-0.69 0.93 -0.62 2 1.92

42 Install nylon brush seals or spring flaps on exterior door
keyholes

-0.67 0.95 -0.41 25 2.22

43 Set the thermostat 1°C lower when heating your home -0.66 1.02 0.26 1100 1.50
44 Turn off air conditioners when leaving the house -0.66 1.17 1.62 50 1.80
45 Refrain from using portable electric heaters to heat large

spaces
-0.65 1.21 1.67 800 1.33

46 Use the dishwasher’s eco-program -0.62 0.95 -0.41 85 1.60
47 Scrape food scraps off dishes prior to loading them into

the dishwasher
-0.61 0.87 -1.29 2 1.64

48 Install an energy efficient washing machine -0.45 0.99 -0.06 200 2.62
49 Stir-fry food -0.44 1.02 0.23 20 1.60
50 Install weather strips on windows -0.43 1.00 -0.01 460 2.63
51 Do maintenance on boiler or geyser -0.41 0.88 -1.22 120 2.00
52 Install thermal mixer taps -0.40 0.97 -0.37 70 2.06
53 Caulk & seal exterior walls -0.37 0.90 -0.93 250 2.25
54 Defrost fridge/freezer -0.36 0.87 -1.69 50 2.61
55 Make coffee without a hotplate -0.35 0.90 -0.91 25 1.54
56 Use rechargeable batteries -0.33 1.06 0.75 0 2.09
57 Buy an energy-efficient fridge-freezer -0.30 0.99 -0.04 160 2.42
58 Unplug devices, appliances, and chargers when not in

use.
-0.25 0.95 -0.54 25 1.76

59 Install an energy efficient dishwasher -0.20 0.92 -0.89 70 2.33
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1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560
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Continuation of Table 5 𝜃𝑖 MNSQ ZSTD kWh EF

60 Trim bushes with garden shears instead of an electric
trimmer

-0.15 0.96 -0.39 5 2.44

61 Get rid of a second refrigerator -0.13 1.07 0.73 240 2.22
62 Use an energy efficient TV -0.09 0.93 -0.72 120 2.67
63 Insulate roofs -0.08 0.94 -0.67 8000 3.71
64 Set the thermostat to 60°C to 65°C on hot water storage

systems, and 50°C on instantaneous hot water systems
-0.06 0.98 -0.16 900 1.54

65 Empty/replace vacuum cleaner filter bags regularly -0.05 0.80 -2.39 5 2.07
66 Position refrigerators to allow for air circulation around

their coils
0.02 0.94 -0.64 25 2.88

67 Insulate cavity walls 0.03 0.90 -1.08 8000 3.40
68 Enable the power management features of computers 0.04 1.00 0.05 40 1.73
69 Descale coffee machines and electric kettles 0.04 1.04 0.48 10 2.05
70 Air clothes instead of washing them 0.06 0.93 -0.89 30 1.89
71 Take advantage of the night-time tariff 0.07 0.84 -1.97 0 2.22
72 Install weather strips on doors 0.08 0.94 -0.68 120 2.00
73 Switch off the computer with a power strip 0.11 1.00 0.01 175 2.17
74 Use renewable energy 0.13 1.13 1.32 0 2.25
75 Check the pressure in your boiler 0.17 0.81 -2.07 0 1.86
76 Insulate heat ducts 0.20 0.90 -1.10 100 2.92
77 Seal any holes in insulation with low-expansion spray

foam
0.21 1.04 0.45 1000 3.00

78 Reduce the duration of your showers 0.21 0.88 -1.38 185 2.33
79 Keep exhaust hood filters clean 0.24 0.78 -2.71 2 2.25
80 Replace dimmer switches 0.25 1.21 1.92 60 1.55
81 Install floor insulation 0.26 1.08 0.78 2450 3.60
82 Install an energy efficient freezer 0.26 0.95 -0.55 190 2.44
83 Install a drain waste water heat recovery system 0.26 1.14 1.60 750 2.38
84 Install energy efficient light fixtures 0.27 0.92 -1.03 50 2.31
85 Maintain clean, air-tight refrigerator door seals 0.31 1.01 0.13 25 2.29
86 Put rugs on the floor to contain heat 0.32 1.07 0.73 60 2.86
87 Install low-flow showerheads 0.36 1.03 0.38 400 2.20
88 Install smaller cisterns on toilets 0.38 0.80 -2.08 0 2.71
89 Clean floors with a broom (instead of a vacuum cleaner) 0.39 1.23 2.44 25 2.25
90 Install an energy efficient computer monitor 0.43 0.92 -0.74 20 1.79
91 Do the dishes manually 0.48 1.25 3.00 160 2.75
92 Plant deciduous trees around your home 0.50 1.06 0.59 1000 3.08
93 Insulate the attic, including the trap/access door 0.55 0.71 -3.11 6400 3.64
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1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

Promoting Energy-Efficient Behavior by Depicting Social Norms 31

Continuation of Table 5 𝜃𝑖 MNSQ ZSTD kWh EF

94 Install underfloor heating (in a well-insulated house
only)

0.68 1.03 0.32 640 3.87

95 Use the TV one hour less every day 0.71 1.13 1.34 75 2.00
96 Switch off the washing machine completely 0.72 1.10 0.95 95 1.78
97 Insulate ceilings 0.74 0.92 -0.78 7400 4.20
98 Install an energy-efficient dryer 0.76 0.90 -0.86 210 2.43
99 Install low-flow aerators in faucets 0.81 1.02 0.23 500 2.45
100 Vent radiators regularly 0.84 0.89 -1.03 300 2.78
101 Turn off the water while soaping up during showers 0.88 0.90 -0.84 400 2.58
102 Set your TV to energy efficient settings 0.89 0.96 -0.29 50 1.78
103 Replace your water heater if it is more than 7 years old 0.89 0.98 -0.09 800 3.15
104 Lower the boiler temperature 0.90 1.00 0.05 40 1.78
105 Insulate hot water tank if it’s warm to the touch 0.91 0.95 -0.38 130 2.70
106 Tumble dry t-shirts briefly instead of ironing them 0.91 1.14 1.04 25 2.20
107 Turn off the hot water heater system when going away

for a few days
0.94 0.86 -1.09 20 2.50

108 Use a tablet instead of a laptop/desktop 1.01 0.88 -0.92 80 2.00
109 Descale the washing machine 1.01 0.98 -0.19 10 2.08
110 Install a motion sensor for indoor/outdoor lights 1.04 0.90 -0.81 25 2.64
111 Switch off the computer screen when downloading 1.09 1.07 0.70 6 1.53
112 Install exterior wall insulation (house wrap) 1.29 1.16 1.05 1700 4.19
113 Switch off the refrigerator when on holiday 1.35 1.12 0.85 20 3.00
114 Install solar powered garden lights 1.36 1.00 0.07 50 1.91
115 Install solar panels 1.49 1.00 0.04 2000 3.33
116 Install an induction stove instead of a natural gas

stove/range
1.51 1.10 0.74 185 3.73

117 Turn off the oven 10 minutes early 1.55 0.79 -1.65 10 1.79
118 Install door closers 1.72 1.14 0.86 220 2.67
119 Install a remote controlled thermostat 1.76 0.98 -0.07 1000 2.88
120 Use electric blankets (instead of a heater) 1.94 1.22 0.99 740 2.31
121 Install heat-resistant radiator reflectors between exte-

rior walls and radiators
2.03 1.05 0.35 900 2.47

122 Mow your lawn with a push reel mower rather than an
electric mower

2.12 1.11 0.61 50 3.00

123 Install a timer on your boiler 2.24 0.98 -0.02 500 2.50
124 Clean lights & light fittings regularly 2.40 0.83 -0.71 2 2.50
125 Set timers on space heaters 2.74 1.08 0.34 50 1.93
126 Use a pressure cooker 2.92 1.11 0.47 30 2.29
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1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626
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1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664
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Continuation of Table 5 𝜃𝑖 MNSQ ZSTD kWh EF

127 Install a home energy usage feedback system to identify
excess base-load

2.97 0.99 0.08 750 2.75

128 Install a solar boiler 3.20 1.16 0.59 1850 3.17
129 Install a centralized temperature system with zone con-

trols & thermostats
3.33 1.05 0.26 3100 3.92

130 Install a heat pump system (when heating your home
using electricity)

3.56 1.07 0.30 1100 3.00

131 Clean refrigerator coils regularly 3.66 0.75 -0.58 15 3.67
132 Use a hot-fill washing machine 3.90 1.04 0.23 40 3.13
133 Install a shower water usage feedback system 3.93 0.90 -0.10 200 2.75
134 Erect a small wind turbine 6.48 1.00 0.00 1400 4.23

End of Table
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