
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/353513190

Investigating the impact of recommender systems on user-based and item-

based popularity bias

Article · September 2021

CITATIONS

0
READS

53

6 authors, including:

Some of the authors of this publication are also working on these related projects:

Multimedia Recommender Systems with Audio-Visual Descriptors View project

Recommender systems View project

Mehdi Elahi

University of Bergen

97 PUBLICATIONS 1,853 CITATIONS

SEE PROFILE

Shiva Parsarad

University of Tehran

1 PUBLICATION 0 CITATIONS

SEE PROFILE

All content following this page was uploaded by Mehdi Elahi on 10 November 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/353513190_Investigating_the_impact_of_recommender_systems_on_user-based_and_item-based_popularity_bias?enrichId=rgreq-ce76540bb5977f7f04a9a8f66443a368-XXX&enrichSource=Y292ZXJQYWdlOzM1MzUxMzE5MDtBUzoxMDg4NjA2NTgwMDE5MjEyQDE2MzY1NTU0NDI5NTg%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/353513190_Investigating_the_impact_of_recommender_systems_on_user-based_and_item-based_popularity_bias?enrichId=rgreq-ce76540bb5977f7f04a9a8f66443a368-XXX&enrichSource=Y292ZXJQYWdlOzM1MzUxMzE5MDtBUzoxMDg4NjA2NTgwMDE5MjEyQDE2MzY1NTU0NDI5NTg%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Multimedia-Recommender-Systems-with-Audio-Visual-Descriptors?enrichId=rgreq-ce76540bb5977f7f04a9a8f66443a368-XXX&enrichSource=Y292ZXJQYWdlOzM1MzUxMzE5MDtBUzoxMDg4NjA2NTgwMDE5MjEyQDE2MzY1NTU0NDI5NTg%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Recommender-systems-26?enrichId=rgreq-ce76540bb5977f7f04a9a8f66443a368-XXX&enrichSource=Y292ZXJQYWdlOzM1MzUxMzE5MDtBUzoxMDg4NjA2NTgwMDE5MjEyQDE2MzY1NTU0NDI5NTg%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-ce76540bb5977f7f04a9a8f66443a368-XXX&enrichSource=Y292ZXJQYWdlOzM1MzUxMzE5MDtBUzoxMDg4NjA2NTgwMDE5MjEyQDE2MzY1NTU0NDI5NTg%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mehdi-Elahi-2?enrichId=rgreq-ce76540bb5977f7f04a9a8f66443a368-XXX&enrichSource=Y292ZXJQYWdlOzM1MzUxMzE5MDtBUzoxMDg4NjA2NTgwMDE5MjEyQDE2MzY1NTU0NDI5NTg%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mehdi-Elahi-2?enrichId=rgreq-ce76540bb5977f7f04a9a8f66443a368-XXX&enrichSource=Y292ZXJQYWdlOzM1MzUxMzE5MDtBUzoxMDg4NjA2NTgwMDE5MjEyQDE2MzY1NTU0NDI5NTg%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Bergen?enrichId=rgreq-ce76540bb5977f7f04a9a8f66443a368-XXX&enrichSource=Y292ZXJQYWdlOzM1MzUxMzE5MDtBUzoxMDg4NjA2NTgwMDE5MjEyQDE2MzY1NTU0NDI5NTg%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mehdi-Elahi-2?enrichId=rgreq-ce76540bb5977f7f04a9a8f66443a368-XXX&enrichSource=Y292ZXJQYWdlOzM1MzUxMzE5MDtBUzoxMDg4NjA2NTgwMDE5MjEyQDE2MzY1NTU0NDI5NTg%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shiva-Parsarad?enrichId=rgreq-ce76540bb5977f7f04a9a8f66443a368-XXX&enrichSource=Y292ZXJQYWdlOzM1MzUxMzE5MDtBUzoxMDg4NjA2NTgwMDE5MjEyQDE2MzY1NTU0NDI5NTg%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shiva-Parsarad?enrichId=rgreq-ce76540bb5977f7f04a9a8f66443a368-XXX&enrichSource=Y292ZXJQYWdlOzM1MzUxMzE5MDtBUzoxMDg4NjA2NTgwMDE5MjEyQDE2MzY1NTU0NDI5NTg%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University-of-Tehran?enrichId=rgreq-ce76540bb5977f7f04a9a8f66443a368-XXX&enrichSource=Y292ZXJQYWdlOzM1MzUxMzE5MDtBUzoxMDg4NjA2NTgwMDE5MjEyQDE2MzY1NTU0NDI5NTg%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Shiva-Parsarad?enrichId=rgreq-ce76540bb5977f7f04a9a8f66443a368-XXX&enrichSource=Y292ZXJQYWdlOzM1MzUxMzE5MDtBUzoxMDg4NjA2NTgwMDE5MjEyQDE2MzY1NTU0NDI5NTg%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Mehdi-Elahi-2?enrichId=rgreq-ce76540bb5977f7f04a9a8f66443a368-XXX&enrichSource=Y292ZXJQYWdlOzM1MzUxMzE5MDtBUzoxMDg4NjA2NTgwMDE5MjEyQDE2MzY1NTU0NDI5NTg%3D&el=1_x_10&_esc=publicationCoverPdf

Investigating the Impact of Recommender Systems on
User-based and Item-based Popularity Bias

Mehdi Elahia,, Danial Khosh Kholgh, Mohammad Sina Kiarostamib, Sorush
Saghari, Shiva Parsa Rad, Marko Tkalčičc

aUniversity of Bergen, Bergen, Norway
bUniversity of Oulu, Oulu, Finland

cUniversity of Primorska, Koper, Slovenia

Abstract

Recommender Systems are decision support tools that adopt advanced algo-

rithms in order to help users to find less-explored items that can be interesting

for them. While recommender systems may offer a range of attractive benefits,

they may also intensify undesired effects, such as the Popularity Bias, where a

few popular users/items get more popular and many unpopular users/items get

more unpopular.

In this paper, we study the impact of different recommender algorithms

on the popularity bias in different application domains and recommendation

scenarios. We have designed a comprehensive evaluation methodology by con-

sidering two different recommendation scenarios, i.e., the user-based scenario

(e.g., recommending users to users to follow), and the item-based scenario (e.g.,

recommending items to users to consume). We have used two large datasets,

Twitter and Movielens, and compared a wide range of classical and modern

recommender algorithms by considering a diverse range of metrics, such as PR-

AUC, RCE, Gini index, and Entropy Score.

The results have shown a substantial difference between different scenarios

Email addresses: Mehdi.elahi@uib.no (Mehdi Elahi), dkhoshkholgh@acm.org (Danial
Khosh Kholgh), Mohammad.Kiarostami@student.oulu.fi (Mohammad Sina Kiarostami),
sorush9saghari@gmail.com (Sorush Saghari), sh.parsarad@gmail.com (Shiva Parsa Rad),
marko.tkalcic@gmail.com (Marko Tkalčič)

URL: https://www.uib.no (Mehdi Elahi), https://www.oulu.fi (Mohammad Sina
Kiarostami), https://www.upr.si (Marko Tkalčič)

Preprint submitted to Journal of Information Processing and Management June 21, 2021

and different recommendation domains. According to our observations, while

the recommendation of users to users may increase the popularity bias in the

system, the recommendation of items to users may indeed decrease it. Moreover,

while we have measured a different level of popularity bias in different languages

(i.e., English, Spanish, Portuguese, and Japaneses), the above-noted phenomena

has been consistently observed in all of these languages.

The final version of this article is accessible through the following link at

the webpage of Information Processing Management https: // doi. org/ 10.

1016/ j. ipm. 2021. 102655

Keywords: Recommender Systems, Popularity Bias, personalization, Twitter,

social media

1. Introduction

The spread of recommender systems in the daily life of users is causing that

more and more decisions are affected by recommendations [1, 2]. Recommender

systems adopt a wide range of algorithms [3, 4] in order to learn from the user

preferences, elicited in various forms [5], and to generate a small set of recom-

mended items, which have high utility for a user, from a larger set of items (the

input dataset) [6, 7]. The recommended set of items might be biased towards

a group of items (e.g. popular items constitute the majority of recommenda-

tions), which, in turn, may have a substantial impact on users’ decisions and

consumption behaviour, for examples on purchases or information consumption.

This algorithmic confounding is a more general problem in artificial intelli-

gence and it can be found in many forms [8]. For example, it has been found

that the number of friends on Facebook is not a reflection of a user’s popularity

or extroversion, as one would expect, but of the bias of the recommendation

algorithm in Facebook [9]. While this observation does not seem to have strong

implication, other cases of algorithmic confounding show a different picture.

In a study carried out by Chaney et al. [10], the authors found that recom-

mendation algorithms increase homogeneity of user behaviour and decrease the

2

satisfaction of users. According to Baeza-Yates [11], having a recommender sys-

tem biased towards popular items might undermine the consumption or sales

of items that are not popular, hence preventing them to become popular. If

the majority of a company’s revenue is generated by a few popular items this

is not a problem from the company’s point of view. However, if a company’s

business is generated by a majority of less-popular items then having such a

recommender system undercuts the company’s revenues.

Algorithmic confounding is not the only source of bias in recommender sys-

tems [8]. Due to the selection bias, i.e. data collection that is not properly

randomized, datasets come with inherent biases even before algorithms are be-

ing applied. In [12], Baeza-Yates claims that the access and usage of the WWW

is correlated with educational, economic, and technological user characteristic.

For example, it is estimated that the majority, around 50% of web pages are in

English while the active English-speaking population is only 5% [12]. It is easy

to imagine a recommender system that would recommend disproportionately

more English web pages than non-English ones.

It has been argued recently that, if the input dataset is already biased,

the recommendation algorithm may intensify that existing bias [13]. Some re-

searchers, such as Adomavicious et al. [14], assumed that the recommenda-

tion algorithm strengthens the bias and proposed an approach to de-bias the

recommended set. More recent research investigated the extent to which the

recommended algorithms intensify the bias. For example, Mansoury et al. [13]

showed that, on the Movielens dataset, the recommendation algorithm actually

does intensify the pre-existing bias from the input dataset.

However, the assumption that a recommender algorithm does intensify the

bias is arguable. It is often true that the bias in the recommended set is different

than the bias in the initial dataset. However, we argue that there are three

possible scenarios:

(a) The bias in the recommended set is higher than the bias in the initial

dataset. For example, on a user level, in the output set less users/authors

3

generate a bigger portion of all items. Another example, on an item level,

is that the majority of engagements with items is done on a smaller set of

items.

(b) The bias in the recommended set is roughly the same as the bias in the

initial dataset.

(c) The bias in the recommended set is lower than the bias in the initial

dataset. For example, in the output set more users/authors generate a

bigger portion of all items or the majority of engagements with items is

done on a larger set of items.

In this paper we investigate whether recommendation algorithms increase the

bias (option a), keep the bias unchanged (option b), or reduce the bias (option c).

We explore different domains (movies and micro-blogging), different languages

(in the micro-blogging domain: English, Japanese, Spanish, and Portuguese),

and we analyze the results from two different perspectives (from the user- and

item-perspective). In particular, we address the following research questions:

• RQ1: Does the intensification/reduction of bias in the recommended set

occur both on a user- and item-basis?

• RQ2: Does the intensification/reduction of bias in the recommended set

occur in datasets from different domains, in particular movies (Movielens)

and micro-blogging (Twitter)?

• RQ3: Are there any differences in the intensification/reduction of bias

between different languages in the Twitter domain?

In summary, the present paper makes the following contributions

• We compare the bias reinforcement on two separate datasets (Movie-

Lens and Twitter) and show that bias is reinforced differently on different

datasets;

4

• We demonstrate that recommendation algorithms increase the bias at the

user level (i.e. in the output set less users generate a bigger portion of all

tweets) whereas there is a reduction of bias on the tweet level (i.e. the

majority of the engagement is spread across more tweets than in the initial

set of tweets);

• We show that there are differences in how the recommendation process

affects the bias on the language basis;

• We evaluate the extent of reinforcement of recommendation-driven bias

on several algorithms.

The remainder of the paper is organized as follows. In section 2, we survey

the related work on biases in recommender systems. In section 3, we describe

the details of our experimental methodology. Finally, in section 4, we report

the results of the experiments and in section 5, we provide the conclusion and

plans for the future work.

2. Related Work

Here we review the related work, going from more general to more specific.

First we will survey the bias in information systems in general, then the works

on bias in recommender systems and finally the work on popularity biases in

recommender systems.

2.1. Bias in Information Systems

Bias is a concept that has its root in different disciplines and hence can

be seen from a diverse perspectives. Mehrabi et al. [15] surveyed existing

biases in the broader fields of artificial intelligence and information systems.

They distinguish between data biases and algorithm-induced biases. One of

the reported biases, related to our work is the activity bias, to which the bias

is datasets can be partially attributed. The authors in [16], found substantial

activity bias in user-generated content online. They have shown that only 2%

5

of Twitter users in 2009 created nearly 50% of all tweets. Additionally, they

found that 1.1% of all tweets have been written and posted by users with a very

low number of followers.

A study by Wu et al. [17] explored how users followed other users on Twitter.

They found that 0.05% of the most popular users have attracted almost 50% of

all followers. In other words, nearly half of the Twitter users follow only a small

set of top celebrities. In a similar study, the authors in [12] explored Facebook

data and found that 7% of all users produced 50% of all posted content.

2.2. Bias in Recommender Systems

A number of prior works have studies the potential bias in recommender

systems, i.e. the bias in the user interaction or the bias based on the self-

explored items. This may depend very much on the core algorithm employed

by a recommender system to generate recommendations and how the collected

history of user interaction is used by the algorithm [18, 19]. If a recommender

system algorithm focuses on exploiting only interaction data, the users may only

see what she want to see (i.e., obvious recommendations). This may keep the

users stay inside a closed world (known as the filter bubble), cut out of new (or

diverse) items that might also have utility for the users [20].

In general, the bias in recommendation output can originate from the pre-

existing bias in the input data. Such bias could be intensified by the algorithm

by further propagating the existing bias from the input data. Such an effect

could strengthened over time as the users interact more and more with the

recommendations generated based on the data by the recommender algorithm

from the previous steps.

This is why several studies have focused on this phenomena and showed that

what happens in reality is more complicated than the above-described process.

An example of such studies is the one carried out by Mansoury et al. [13], where

the authors studied the effect of the feedback loop on the bias amplification

in recommender systems through an offline simulation. The paper formally

and empirically showed that different recommendation algorithms amplify the

6

existing bias through various iterations of user interaction. Additionally, for two

user groups of males and females, they observed that the bias amplification for

the females, which happens to be in minority group based on their population

and their number of ratings, was higher than males. This means that the impact

of the feedback loop is generally stronger for users who belong to a minority

group.

Some studies have shown consistent and robust evidence that consumers’

ratings are biased toward system-generated recommendations. In [21], the au-

thors measured the bias induced by the display context as the mean difference

between people’s conclusions when a high and low value was presented. In their

study, different display designs, adopted by recommender systems for commu-

nicating personalized recommendations to the user, were assessed. The authors

found substantial bias level and reported that none of the rating display options

completely removed the biases generated by the customized recommendations.

They reported that some interface displays were more advantageous than oth-

ers for reducing biases. In particular, graphical recommendation formats led

to significantly lower biases in users’ post-consumption preference ratings than

their equivalent numerical forms (either as precise numbers or numeric ranges).

However, providing recommendations as ranges of predicted rating values rather

than as accurate values (either under graphic or numeric conditions) did not im-

pact the appearance of biases.

2.3. Popularity Bias in Recommender Systems

A well-known type of bias in recommender systems is the popularity bias.

This bias is intrinsically inherited by any dataset, which includes a small number

of popular items (typically referred to as the short head) and a big number of

unpopular items (typically referred to as the long tail) [22]. Since the short head

items are already popular (e.g., highly-liked tweets or highly-watched movies),

the recommender systems are typically presented as smart tools which can pro-

mote more the unpopular long tail items hence increasing their popularity. It

is believed that this could provide various benefits to users, as they could find

7

interesting less-explored items, as well as enhancing the profit of the platforms

(e.g., Twitter and YouTube). The latter happens since the overall user engage-

ment and content consumption increases.

An interesting observation, reported in some of the related works, is that

even the user ratings (and hence overall average rating) of items is strongly in-

fluenced by the recommendations generated by the system. Although popular

items are generally good recommendations, they are also likely to be well-known.

So delivering only popular items will not enhance new item discovery and will

ignore users’ interests with niche tastes. According to [23, 24], while ∼20%

of items account for popular items, cumulatively, more than ∼80% of the user

ratings are provided to them. The long tail receives so few ratings that meaning-

ful cross-user comparison of their ratings becomes unreliable. Since short-head

items are likely to be well-known to many users, the ability to recommend items

outside of this band of popularity will determine if a recommender system can

introduce new products and experiences.

Twitter is one of the most effective tools in propagating information in real

time, and the propagation effectiveness of a tweet is related to the number of

times the tweet has been retweeted. Different models have been proposed in the

literature to understand the retweet proneness of a tweet (tendency or inclina-

tion of a tweet to be retweeted). For example, in [25], a model for obtaining

the indications about the probable number of retweets a particular tweet may

obtain from the social network was proposed.

In summary, almost all of the aforementioned related work demonstrated

that recommender systems either introduce bias (to an unbiased initial dataset)

or increases the bias in the initially biased dataset. However, our work com-

plements this knowledge with several contributions, among others, by showing

that in the micro-blogging domain (Twitter) a recommender system may ac-

tually generate both of these effects, depending on the recommendation and

experimental scenario. In other words, the majority of the prior works have

focused on a single scenario, either the item-based scenario or the user-based

scenario. Our work is one of the very few works that covers both scenarios.

8

Hence, we investigate the potential bias in the item recommendation scenario

(e.g., recommending tweets or movies) as well as investigating the potential bias

in the user recommendation scenario (e.g., recommending twitters or movie di-

rectors).

Our extensive experiments, considering item-based and user-based scenar-

ios, have shown a substantial difference between bias in recommendation when

focusing on items compared to when focusing on users. We have shown that

the bias may very much depend on the characteristics of the data as well as the

specifications of the core recommender algorithm. We have adopted advanced

recommender algorithms (including deep learning models) and compared them

in terms of relevant metrics, such as the Gini index and the Entropy score.

Moreover, none of the previous works have investigated the potential impact

of languages on bias in recommender systems. To the best of our knowledge,

this is the first study that has investigated such an impact.

3. Methodology

In addressing the formulated research questions, we have designed and con-

ducted a number of experiments. In the first set of experiments, we performed

an exploratory analysis to better understand the data’s characteristics. This

has been followed by the performance evaluation of different recommender algo-

rithms and the measurement of the quality of recommendation in terms of two

metrics, adopted by Twitter in RecSys Challenge 2020 [26]: the Area Under the

Precision-Recall Curve (PRAUC) and the Relative Cross-Entropy (RCE). In

the second set of experiments, we measured the impact of different algorithms

on the popularity bias in terms of the Gini index and the Entropy score. Finally,

we have investigated the potential impact of the language of Twitter users, when

measuring the popularity bias, generated by recomemnder algorithms.

3.1. Datasets

Two different datasets have been used for the experiments: the Twitter and

the Movielens dataset. The Twitter dataset has been provided by Twitter for the

9

RecSys Challenge 2020 [26]. The final version of the Twitter dataset includes 126

million user engagements (i.e., like, reply, retweet and retweet with comment)

with 23.4 million users and 60.8 million tweets. The dataset has been collected

over a period of two weeks and it contains public user interactions. Furthermore,

we have used the Movielens 1M dataset, which contains one million anonymous

ratings provided by 6040 users to 4000 movies.

3.2. Evaluation Methodology

We have split both of the datasets into the train set (85%) and test set

(15%). For the Twitter data, the train set contained 107 million tweet-user

pairs and the test set contained 19 million tweet-user pairs. We have used the

train set to build different recommendation models and to predict the data

within test set. This allowed us to assess the quality of the recommendation

models predicting different types of the user engagements within the test set.

For the Movielens dataset, the train set contained nearly 850000 ratings and

the test set contained 150000 ratings. The train set has been used to train the

models to predict the ratings in the test set. We have measured the quality of

the predictions using the Relative Cross-Entropy (RCE) and Area Under the

Precision-Recall Curve (PR-AUC) [26].

The RCE metric corresponds to the improvement of a prediction relative to

the straw man, or the naive prediction, measured by cross-entropy (CE). The

naive prediction corresponds to the case that does not consider the user and

tweet features, i.e. it always predicts the average (observed) CTR of the train

set. Suppose the average CE of the naive prediction is CEnaive and the average

CE of the prediction to be evaluated is CEpred, then RCE is defined as

RCE = 100
(CEnaive − CEpred)

CEnaive

.

The benefit of using RCE is that we can obtain a confident estimate of

whether the model is under- or over-performing the naive prediction [26]. The

10

higher the RCE, the higher the prediction quality, and hence the better the

performance of the recommender system.

The PR-AUC metric is equivalent to the true positive rate (or sensitivity)

in a classification problem, while precision is the same as the positive predictive

value. Reviewing both precision and recall is particularly useful when there

is an imbalance in the observations between two classes. The PR-AUC is a

commonly used evaluation metric and is more sensitive than AUC on skewed

data. The higher this metric the better the performance of the recommender

system.

We measured the level of bias in the raw data and compared it with the

output of the recommender algorithms to understand whether the bias has been

intensified or not by these algorithms. For that we analyzed the Twitter dataset

and sorted the tweets according to their popularity (from the most popular to

the least popular). The popularity of a tweet has been measured in terms of the

number of times the users have interacted with (e.g., liked, replied, retweeted, or

retweeted with comment) that tweet. We called the rank of an individual tweet

in the sorted list the tweet rank. Accordingly, we computed the cumulative

frequency of the user engagement for different tweets at a given rank. Similarly,

we computed the user rank representing the rank of a Twitter user when all

users are sorted according to their popularity. The popularity of a user has been

measured according to the number of times the tweets of that user have been

interacted with the other users. This is followed by computing the cumulative

frequency of the user engagement for different users at a given rank. Then we

have compared the cumulative frequency of recommended items according to

the number of times they appeared in the recommendation lists generated for

different users. This allowed us to understand whether a recommender algorithm

intensifies the level of the pre-existing popularity bias or not. This methodology

has been repeated for the Movielens dataset.

In addition to that, we computed the Gini index and the Shannon Entropy

in our evaluation. The Gini index is a common metric that represents the level

of equality. The Gini index is originally based on the Lorenz curve and a lower

11

Figure 1: Lorenz curve (source: [28])

Gini index indicates higher equality [27]. Let L(u) be the Lorenz curve denoting

the fraction of the sales generated by the lowest 100*u% of the sold items u ∈

[0,1], i.e., L(u) for a data point u ∈ [0,1] is the fraction of sales of products that

are in 100*u% of the least sold items. A sample of a Lorenz curve is shown in

Figure 1.

The Gini index is defined as:

G =
A

A+B
, (1)

A =

∫ 1

0

(u− L(u))du,B =
1

2
−A

In Economics, a higher level of equality is defined by a situation where

people’s earnings are similar. This is illustrated by the Lorenz curve closer to

the line of equality, i.e. the diagonal line in Figure 1 (Gini value of 0). The lower

level of equality, on the other hand, is defined by the situation when people’s

earnings are very different. This is where the Lorenz curve gets closer to the

horizontal axis (Gini value of 1) 1.

1https://www.investopedia.com/terms/l/lorenz-curve.asp

12

In addition to the Gini index, we computed the Shannon Entropy [29] ac-

cording to the following formula:

H = −
∑n

i=1 pi.log(pi); pi = occ(itemi)
count(choices)

(2)

where n is the number of unique items that has been engaged with by the users,

and occ(itemi) denotes the number of times the i-th item was engaged. As the

maximum value of H depends on the number of items n, H is normalised by

dividing it with log(n).

In the follow-up experiments, we clustered the dataset based on four most

popular languages used on Twitter, i.e., English, Japanese, Spanish, and Por-

tuguese. Our goal was to investigate if different languages of Twitter users may

have any impact on the level of bias introduced by recommender algorithms.

We have performed two different analyses (described with details later on), i.e.,

item-based analysis and user-based analysis.

For the item-based analysis, we clustered the data based on the language

label provided for every individual tweet. For the user-based analysis, we needed

to identify the language of every user. For that, we determined the language

label of every user based on the language of the majority of her tweets. After

the clustering, we have computed the above-described metrics on every language

cluster.

3.3. Feature Extraction

The appropriate features needed to be determined prior to implementing

various recommendation algorithms. Therefore, as part of the preprocessing

stage, features were extracted from both the Twitter dataset and the MovieLens

dataset. For Twitter, this resulted in 38 different features, which can be further

divided into the following groups:

• Categorical Data: Features that determine which categories the tweet or

the user belongs to. These include:

– Engaging user verified status.

13

– Engaged with user verified status.

– Whether engaged with user follows engaging user or not.

– Type of the tweet (TopLevel, Retweet, or Quote).

– Whether there is media content (Video, GIF, Photo) present in the

tweet or not.

– Whether there is a question mark in the tweet or not.

These categorical features were either boolean coded or one-hot encoded

depending on the number of categories.

• Previous Interaction Data: Features that act like “flags” and indicate

whether the user has previously engaged under certain conditions or not.

These consist of the following alternatives:

– Previous interaction with the language of the tweet.

– Previous interaction with any of the hashtags present in the tweet.

– Previous interaction with any of the domains present in the tweet (in

cases where there are hyperlinks in the tweet).

– Previous interaction with any of the media types (Video, GIF, Photo)

present in the tweet.

• Previous Engagement Rate: If there is any previous information in the

train set about a user, their previous engagement rate for each engagement

type (Like, Reply, Retweet & Retweet with Comment) is included as an

input to the recommender. The reason for doing so is that a user’s past

behavior is an indicator of their future action. For instance, a user who

has a high reply rate in the training data is much more likely to reply to

a new tweet than another user with a low reply rate. In cases where there

is no past user data to extract this rate, global engagement rate (average

of all users) is used instead.

14

• Quartile Data: Some of the numerical features included in the original

dataset were difficult to deal with primitively. For example, the number of

followers has a wide range, and simply scaling it to a predefined range of 0

to 1 results in a poor representation of the data due to the distant outliers.

So instead, a one-hot encoding was used to indicate which quartile the

sample belonged to in these cases. The following features were included

using this method:

– Engaging user follower count.

– Engaging user following count.

– Engaged with user follower count.

– Engaged with user following count.

There was less feature extraction required for the MovieLens dataset, as it

is much smaller both in the number of samples and features. The final pre-

processed dataset contained 46 features with the following composition:

• Categorical Data: these features were either boolean or one-hot encoded:

– User gender.

– User age (7 groups).

– User occupation (20 categories).

– Movie genre (18 categories).

3.4. Recommendation algorithms

We implemented a set of popular recommender algorithms from two big

classes of approaches, i.e., Collaborative Filtering (CB) and Content-based Fil-

tering (CBF). While CBF focuses on leveraging the content descriptions of the

items (e.g., genre), CF focuses on exploiting solely the customer feedback (e.g.,

ratings). Modern recommendation approaches utilize algorithms based on Arti-

ficial Neural Networks that are capable of learning from both item content and

user feedback. We considered a diverse set of algorithms from these approaches,

15

ranging from a more classical algorithm (e.g., k-NN) to a more modern algo-

rithm (deep learning). These algorithms have been tested on both the Twitter

dataset [26] and MovieLens dataset [30] with minor adjustments made to each

algorithm due to the differences between two datasets. The full list of considered

algorithms is the following:

• Random As a simple, worst-case baseline, the random algorithm classi-

fies samples according to a uniform distribution, with no regard to the

provided input. Therefore, there is an equal chance an engagement is

predicted or not as the output.

• Personal Average One of the simplest recommenders implemented, per-

sonal average predicts each user’s mean engagement rate from past experi-

ence (train set) for each user-item pair in the test set. In cases where there

is no past user experience (which is only 2.23% for Twitter and 0.1% for

MovieLens), the global average (average of all user engagements) is used

instead.

• KNN k-Nearest Neighbors is a commonly used model in classification

especially in problems where there are clusters of data points. KNN clas-

sification works by first finding the k closest data points in the train set to

the target sample (In our case k=3) and then determines a target’s class

by majority voting, meaning the class with most votes among neighbors

is selected. Due to the large size of the dataset, an exact KNN approach

was not tractable and therefore an approximate one [31] was used instead.

• XGBoost XGBoost [32] is one of the more elaborate models introduced

so far. It is based on gradient boosting decision trees, and is widely used

for classification tasks. While not being quite state-of-the-art compared

to other intricate models used today as recommender systems, XGBoost

does perform fairly well in recommendatino scenarios.

The objective function that we have to minimize for XGBoost is the fol-

lowing:

16

L(t) =

n∑
i=1

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft), ft ∈ F

Where ft is a random tree in F , the space of regression trees, and Ω is

the regularization function used to prevent over-fitting. As stated in [32],

this function cannot be optimized using traditional optimization methods

in Euclidean space (since it is a function of functions). Instead, it is

suggested to use second-order approximation for optimizing the objective

in the general setting:

L(t) ≈
n∑

i=1

l[yi, ŷ
(t−1)
i + gift(xi) +

1

2
hif

2
t (xi)] + Ω(ft)

After hyper-parameter optimization we used the following values:

– Learning Rate = 0.01

– Max Tree Depth = 15

– Number of Estimators = 150

– Trained for as long as there was no improvement in 10 consecutive

epochs

• MLP Multi-layer Perceptrons are the foundation of deep neural networks.

The architecture of this model is made of n layers, where each layer has

m neurons and in each of these neurons there is a vector of weights and a

bias. In addition, each layer has an activation function. There are three

main steps involved in a neural network: forward passing, computing the

error and error back-propagation.

1. Forward pass: We have two main steps in each layer for calculating

weighted inputs:

Zt = Wt ∗Xt−1 + bt

With Wt being vector of weights at layer t, Xt−1 being input for layer

(or output of previous layer), and bt being bias for layer t.

17

Then we pass the Z vector to an activation function:

yt = ft(Zt)

which is the output of this layer and input for the next layer.

2. Error computation: After completing the forward pass, the network

error is calculated by a loss function (in our case, a binary cross-

entropy function was used as our task was binary classification)

Etotal = L(Y, T)

where Y is our network’s output vector, T is the target vector, and

L is the loss function.

3. Error Backpropagation: To optimize the network weights and biases

through gradient descent, the computed error for each layer is propa-

gated to its previous layer by using the chain rule. This way, we can

propagate the error from our loss function in the last layer all the

way back to network’s first layer. Therefore, the rule for updating

the weights is:

wnew
t = wprevious

t − α ∗ ∂Etotal

∂wprevious
t

∂Etotal

∂wprevious
t

= xt ∗ δt

where α is the learning rate and δt is the error at layer t. Similar

calculations could be trivially done for updating biases which are not

given here.

The aforementioned steps are repeated until the loss function converges

to a minimum.

After hyper-parameter optimization we used the following values:

– Learning Rate = 0.001

18

– Optimizer: Adam

– Batch Size = 64

– Network Architecture: 12 Layers (ReLU) + 1 Layer (Sigmoid)

– Regularization: L2 Norm

• SVD++ Singular Value Decomposition is an algorithm is equivalent to

Probabilistic Matrix Factorization when baselines are not used. SVD is

mostly used for recommender systems based on ratings.

The SVD prediction rui is defined with

r̂ui = µ+ bu + bi + qTi pu

where pu are user factors, qi are item factors, bu are user biases and bi are

item biases.

To estimate all the unknowns we minimized the following regularized

squared error

∑
rui∈Rtrain

(rui − r̂ui)2 + λ(b2i + b2u + ||qi||2 + ||pu||2)

The SVD++ algorithm, an extension of SVD, uses also implicit ratings:

r̂ui = µ+ bu + bi + qTi (pu + |Iu|−
1
2

∑
j∈Iu

yj)

where the yj terms are a new set of item factors that capture implicit

ratings. Here, an implicit rating describes the fact that user u rated item

j, regardless of the rating value. If user u is unknown, then the bias bu

and the factors pu are assumed to be zero. The same applies for item i

with bi, qi and yi.

We used the following hyper-parameters:

– Learning Rate = 0.001

19

– Trained for 30 epochs

• DeepFM [4] combines Deep Neural Networks (DNN) and Factorization

Machines (FM) [33] in order to model both low- and high-order interac-

tions among features. DeepFM consists of 2 major parts:

– FM part, which is responsible for capturing low-order interactions:

linear (order-1) and pairwise (order-2) interactions.

– DNN part, which is a deep feed-forward neural network that extracts

high-level feature interactions.

DeepFM is similar to the Wide & Deep models [34], but the difference is

that DeepFM uses a shared embeddings layer, which eliminates the need

for manual feature extraction required for the FM module. The output of

DeepFM is computed in the following way:

ŷ = sigmoid(yFM + yDNN)

where yFM is the output of the FM module and yDNN is the output from

the DNN module.

It should be noted that, we used the implementation of DeepFM provided

by the authors in [4], using the following parameters:

– Learning Rate = 0.002

– Batch Size = 64

– Trained for 200 epochs

3.5. Threshold Predictions

Some of the methods used (e.g., personal average, MLP and SVD++) may

require a classification threshold as they are, in their nature, regression models

that return probability values as the output. However, the utilized datasets and

the tasks that we tackled are primarily focused on classification. In order to

determine the optimal classification threshold, we proceeded as follows. First,

20

the rate of recommendations made in the train set was determined for each

engagement type (i.e., Like, Reply, etc.). Next, the threshold was selected so

that the recommendation rate of each engagement type in the test set would

match the recommendation rate of the same engagement type in the train set.

This way, it was assured that the distribution of recommendations in both the

train and test set stays as close to each other as possible.

Finally, we have performed the experiments using a server machine running

Ubuntu 16.04 equipped with an Intel XEON E5 2697 V3 CPU clocked at 2.6

GHz with 128 GB of DDR3 RAM.

4. Results

4.1. Experiment A: Exploratory and Performance Analysis

In the first set of experiments, we have explored the data in order to obtain

an overall view on the characteristics of the data. This has been followed by

the evaluation of the performance for different recommender algorithms. This

helped us to compare these algorithms with respect to accuracy in different

application domains (i.e., micro-blogging and movie domains).

Figure 2: Word Cloud in English (left), Word Cloud in Spanish (right)

Initially, we have adopted NLP 2 techniques, such as stop-word removal and

tf-idf, in order to pre-process and visualize the content of the tweets. After these

steps, we have computed the word cloud of the tweets in different languages.

2Natural Language Processing

21

Figure 2 shows the word cloud for the two most popular languages, English and

Spanish, where, for the sake of readability, we have translated the Spanish words

into English. We have noticed that, despite the expected similarities, there are

considerable differences among the most popular (and unique) words, used in

the tweets within different languages.

Figure 3: Pie chart that represents the histogram of the engagements

We have further analyzed the Twitter dataset in terms of user engagements,

which includes four classes of actions, Like, Reply, Retweet, and Quote. The

histogram of the engagement classes is plotted in Figure 3, illustrated as a pie

chart. As it can be seen, there is a big imbalance among different classes of

engagements. The largest portion of data belongs to Like class which accounts

for 75.3 %. The next class is Retweet with 19.0%, Reply with 4.5% and Quote

with 1.3%. Such a large imbalance may also justify the need for consideration

of Relative Cross Entropy (RCE) as an important metric in the experiments.

In the next experiment, we have compared the performance of different rec-

ommender algorithms in terms of PR-AUC and RCE metrics. The results are

22

Table 1: The comparison of the performances of different recommender algorithms. TW:

Twitter dataset, ML: MovieLens dataset.

PR-AUC RCE

Data XGB MLP KNN SVD++ DeepFM XGB MLP KNN SVD++ DeepFM

Like 0.83 0.71 0.70 0.43 0.70 -881.41 0.00 -1551.21 -0.65 -2695.98

TW Reply 0.62 0.51 0.36 0.02 0.46 -416.44 -10.93 -669.62 -26.10 -26547.00

Retweet 0.62 0.55 0.48 0.11 0.41 -700.37 -0.11 -967.79 -6.11 -8893.43

Quote 0.48 0.50 0.21 0.01 0.24 -436.72 -31.11 -540.40 -32.44 -74613.12

ML Rating 0.28 0.25 0.05 0.25 - 1.37 1.20 7.01 1.81 -

presented in Table 1. As it can be seen, the best overall performance has been

observed for XGBoost followed by one of our deep learning techniques (MLP).

For the Twitter dataset, in terms of PR-AUC (i.e., Area Under the Precision-

Recall Curve), the XGBoost algorithm obtained the value of 0.83 (predicting

Likes), 0.62 (predicting Replies), and 0.62 (predicting Retweets). When pre-

dicting quotes, MLP obtained a slightly better result, 0.50. In terms of RCE

(i.e., Relative Cross Entropy), the MLP algorithm obtained the value of 0.00

(predicting Likes), -10.93 (predicting Replies), -0.11 (predicting Retweets) and -

31.11 (predicting Quotes). For the Movielens dataset, the best results have been

achieved by the XGBoost and KNN algorithms. While XGBoost obtained the

best results for PR-AUC (0.28), KNN obtained the best value for RCE (7.01).

These results clearly indicate the superior accuracy of recommendation based

on XGBoost (an optimized distributed gradient boosting method) and MLP (a

deep learning technique). While we have evaluated the performances of these

algorithms, the main focus of the paper will be reporting the results of the next

experiments, measuring the impact of these recommender algorithms on the

popularity bias.

4.2. Experiment B: User-based and Item-based Analysis

In the second set of experiments, we wanted to address the research ques-

tions RQ1 and RQ2. Hence, we were interested in investigating the level of

bias originated from different recommender systems when operating in differ-

ent application domains (micro-blogging and movie). In addressing the RQ1,

23

we have considered two different recommendation scenarios, i.e., (i) when the

systems recommends items to a target user compared to (ii) when the system

recommends users to a target user. Examples of the former scenario can be

Twitter recommending tweets to a target user to read or YouTube generating

recommendation of videos for user to watch. Examples of the latter scenario

can be Twitter recommending user to user to follow or YouTube recommending

channels of the video makers to users to subscribe.

The results are illustrated in Figures 4 and 5. The former figure has been

made by computing the cumulative frequency of user engagement for different

items (tweets) or users (Twitter users) at a given rank in the Twitter dataset.

The latter figure has been made by computing the cumulative frequency of

ratings for different items (movies) or users (movie directors) at a given rank

in the Movielens dataset. In both of the figures the x-axis represents the rank

of each item (or user) when sorted according to their popularity. Hence, the

more popular items (or users) are found in the left side and the more unpopular

items (or users) are found in the right side of the x-axis. The y-axis represents

the cumulative prevalence of the items (or users) found in the data. It can be

clearly seen in the figures that a few highly ranked items (or users) dominantly

receive the largest portion of user engagements (in the Twitter dataset) or user

ratings (in the Movielens dataset).

Considering the results of Twitter (Figure 4), as it can be seen, when a

system recommends users to a target user, i.e., (e.g., recommending whom to

follow), all different types of recommender algorithms may similarly impact the

system by increasing the popularity bias compared to the level of bias in the

raw data. This can be observed in Figure 4-top, where the raw data, provided

by Twitter, is illustrated with thick gray color and the recommender algorithms

are illustrated with different colors and styles. The figure clearly shows that

all algorithms may increase the popularity bias. This basically means that the

popular users, with a large number of followers, will become even more popular.

The worst results have been obtained by recommendations based on the deep

learning algorithm (MLP), depicted with green color.

24

Figure 4: Twitter Dataset: User-based analysis of bias (top), Item-based analysis of bias

(bottom)

In contrast to this, as it can be seen in Figure 4-bottom, when the system

generates recommendations of items (tweets) for users, i.e., which tweets to

25

read and engage with, the popularity bias gets decreased. Consequently, this

basically means that the unpopular items (tweets) could gain more popularity

and hence been seen by larger number of users. This surprising phenomenon

can be observed for all algorithms depicted with different colors.

Considering the Movielens results, illustrated in Figure 5, the above men-

tioned phenomenon has not been observed. Hence, the substantial differences

between user-based recommendation and item-based recommendation scenarios

(reported for Twitter dataset) have not been observed in Movielens dataset.

When considering recommendation of users to users (e.g., recommending a

movie director to users to follow), shown in Figure 5-top, some of the algo-

rithms may increase the popularity bias (e.g., SVD++), compared to the raw

data, and some may decrease it (e.g., KNN). Similarly, considering the recom-

mendation of items to users (e.g., recommending movies to users to watch),

shown in Figure 5-bottom, again some of the algorithms may increase the pop-

ularity bias (e.g., MLP), compared to the raw data, and some may decrease

(e.g., KNN). This is an interesting observation and it demonstrates that the

impact if recommender algorithms on popularity bias can strongly depend on

the characteristics of the collected data, recommendation scenario, and other

particularities of the application domain.

4.3. Experiment C: Language Impact on Popularity Bias

In the third set of experiments, we addressed RQ3 by analysing the Twitter

data in different languages and comparing them against each other. We were

interested in investigating whether or not the recommender algorithms that use

data in different languages may exhibit differences in the level of popularity

bias.

In order to compare the popularity bias in different languages, we considered

two well-known metrics, the Gini index and the Entropy score, which have

been computed for the raw data in a particular language as well as for the

recommendations generated by different algorithms using the data.

Figure 6 represents the results for the Gini index. First of all, as it can be

26

Figure 5: Movielens Dataset: User-based analysis of bias (top), Item-based analysis of bias

(bottom)

seen, the raw data in different languages have different levels of impact on the

Gini values. Considering the user-based experimental scenario (Figure 6-top),

27

Figure 6: Comparison of Gini scores of different users who tweet in different languages (top),

and different tweets in different (bottom)

the level of popularity bias in the raw data is 72.04 for the English language

while this is 68.01 for Portuguese, 65.43 for Spanish and 60.55 for Japanese.

This indicates that the difference between the popularity of highly followed

28

users and lowly followed users is higher for the English language than for the

other languages. The lowest such difference has been observed for the Japanese

language. The same trend can be observed when comparing the output of

different recommender algorithms. Again, recommendation of users to users

(e.g., recommending whom to follow) creates more popularity bias in English

language compared to the other languages.

Considering the item-based experimental scenario (Figure 6-bottom), the

differences among the languages is slightly lower than in the user-based sce-

nario while the order of the languages is maintained. Accordingly, the level of

popularity bias in the raw data is 72.32 for English language while this is 70.58

for Portuguese, 64.53 for Spanish and 64.28 for Japanese. This is an indication

that the difference between the popularity of highly engaged tweets (i.e., items)

and lowly engaged tweets is much higher for the English language than for the

other languages. The lowest such difference has been observed for the Japanese

language.

This is an interesting observation and may need a discussion. First of all,

it is important to note that the Twitter users who tweet in a single language

may not necessarily come from one country. Hence, for some languages, such as

English, the range of users who generate tweets in this language could be very

wide.On the other hand, for some other languages, such as Japanese, the users

who generate tweets may come from a smaller set of countries (mainly Japan).

This might be an explanation why the observation for these languages differ.

Moreover, there might be some other factors that causes such a difference in the

observation. This may include societal and cultural aspects that may certainly

influence the behaviour of the users in the online platforms such as Twitter.

While this can be of high interest for further investigations it is beyond the

scope of this research.

As a follow-up to the described experiments, we have also compared the dif-

ferences in languages considering the entropy scores, computed for the raw data

as well as for the recommendations generated by different algorithms. Figure

7 shows the results. Again, we observed difference among languages in terms

29

of entropy scores. Figure 7-top shows the user-based experimental scenario and

reports the level of entropy in the raw data to be 16.84 for English language,

17.14 for Japanese, 15.79 for Spanish, and 14.80 for Portuguese. In terms of

item-based popularity bias (Figure 7-bottom), the raw data of English language

exhibits the largest entropy score. This value is 19.01, while it is 18.55 for

Japanese, 17.74 for Spanish, and 16.71 for Portuguese. These are considerably

higher entropy scores compared to the user-based analysis of these languages.

Hence, the difference between the popular users (i.e., highly followed) and un-

popular users (i.e., lowly followed) is higher than the difference between popular

tweets (i.e., highly engaged) and unpopular tweets (i.e., lowly engaged).

In these experiments we have observed a very similar phenomenon as the

one discussed before: substantial difference between the user-based experimen-

tal scenario, i.e., recommending users to users to follow, in comparison to the

item-based experimental scenario, recommending tweets to users to engage. In-

terestingly, such a difference is consistently observed in all the analyzed lan-

guages. This may confirm that our reported results do not depend on the raw

data (tweets) collected in a particular language or particular users (twitters)

whom generate the tweets in that language and might be observed when mea-

suring different metrics.

4.4. Discussion

Previous research (e.g. [13]) showed that applying recommendation algo-

rithms to datasets intensifies the existing bias. We were wondering if this con-

clusion is generalizable, hence the main research questions addressed by this

work were two-dimensional: (i) does the application of recommendation algo-

rithms intensify or reduce the pre-existing bias in the input datasets and (ii)

how is this intensification/reduction dependant across users-vs-items, different

domains (movies, micro-blogging), and languages. The short answer is that the

bias is sometimes intensified and sometimes reduced by the recommender algo-

rithm, hence making the claim of universal bias intensification not generalizable.

When looking at our results in more depth we can observe the following: (a) in

30

Figure 7: Comparison of Entropy scores of different users who tweet in different languages

(top), and different tweets in different (bottom)

the micro-blogging domain, when recommending users to users (e.g. which users

to follow), the recommender algorithms intensify the pre-existing bias, (b) in the

micro-blogging domain, when recommending items to users (e.g. which tweets

to read) the recommender algorithms decrease the pre-existing bias, (c) in the

movies domain, there was no clear conclusion as some algorithms increased and

some decreased the pre-existing biases, both in the user-user recommendation

scenario and the item-user recommendation scenario, (d) in the micro-blogging

domain, the pre-existing biases are different in different languages, (e) across

multiple languages some algorithms increase and some decrease the bias.

31

Our main message, that the application of recommender systems sometimes

intensifies and sometimes decreases the pre-existing bias, has many implications,

among which we highlight two: (i) for practitioners, it is important not to

assume that a recommendation algorithm will increase the bias but to verify it

as we have shown that sometimes this is not the case and (ii) for researchers, it

is important to conduct further studies to investigate the reasons for what now

appears to be unpredictable behaviour of recommender algorithms in terms

of increasing/decreasing the bias and to devise methods for mitigating these

changes.

5. Conclusion

In this paper we have investigated whether recommendation algorithms in-

crease the bias, keep the bias unchanged, or reduce the bias. We have designed a

comprehensive evaluation and considered two experimental scenarios, i.e., user-

based and item-based scenario. An example of the former is the recommendation

of users to users and an example of the latter can be the recommendation of

items to users. We have used two well-known datasets, Twitter and Movielens,

and compared a wide range of classical (e.g., KNN) and modern recommender

algorithms (deep learning). The comparison has been made with respect to

diverse forms of metrics, i.e., precision-recall area under curve (AUC), relative

cross entropy (RCE), Gini index, and entropy Score.

The results have shown a substantial difference between the above mentioned

scenarios and hence the recommendation of users to users may have a completely

different impact on popularity bias compared to recommendation of items of

users. We have also analyzed this phenomenon considering the Twitter data.

The results have shown that, despite the difference of languages in terms of

popularity bias, the above-noted phenomenon can be consistently found in all

the languages considered.

For further work we plan to extend our evaluation by considering a larger

dataset including more languages. We would like to repeat the analyzes con-

32

sidering less popular languages. In addition to that, we plan to perform a real

user study where the recommendation generated by different algorithms are

compared by users in terms of popularity bias.

6. Acknowledgements

This work was supported by industry partners and the Research Council of

Norway with funding to MediaFutures: Research Centre for Responsible Media

Technology and Innovation, through The Centres for Research-based Innovation

scheme, project number 309339.

References

[1] M. Karimi, D. Jannach, M. Jugovac, News recommender systems–survey

and roads ahead, Information Processing & Management 54 (6) (2018)

1203–1227.

[2] M. S. Pera, Y.-K. Ng, A group recommender for movies based on content

similarity and popularity, Information Processing & Management 49 (3)

(2013) 673–687.

[3] X. He, K. Deng, X. Wang, Y. Li, Y. Zhang, M. Wang, Lightgcn: Sim-

plifying and powering graph convolution network for recommendation, in:

Proceedings of the 43rd International ACM SIGIR Conference on Research

and Development in Information Retrieval, 2020, pp. 639–648.

[4] H. Guo, R. Tang, Y. Ye, Z. Li, X. He, Deepfm: a factorization-machine

based neural network for ctr prediction, arXiv preprint arXiv:1703.04247.

[5] M. Elahi, M. Braunhofer, T. Gurbanov, F. Ricci, User preference elicita-

tion, rating sparsity and cold start. (2018).

[6] F. Ricci, L. Rokach, B. Shapira, Recommender Systems: Introduc-

tion and Challenges, in: Recommender Systems Handbook, Vol. 54,

Springer US, Boston, MA, 2015, pp. 1–34. arXiv:arXiv:1011.1669v3,

33

doi:10.1007/978-1-4899-7637-6_1.

URL http://www.springerlink.com/index/10.1007/

978-0-387-85820-3http://link.springer.com/10.1007/

978-1-4899-7637-6{_}1

[7] D. Margaris, C. Vassilakis, D. Spiliotopoulos, What makes a review a reli-

able rating in recommender systems?, Information Processing & Manage-

ment 57 (6) (2020) 102304.

[8] M. Elahi, H. Abdollahpouri, M. Mansoury, H. Torkamaan, Beyond algo-

rithmic fairness in recommender systems, in: Adjunct Publication of the

ACM Conference on User Modeling, Adaptation and Personalization, 2021.

[9] J. Ugander, B. Karrer, L. Backstrom, C. Marlow, The Anatomy of the

Facebook Social Graph (2011) 1–17arXiv:1111.4503.

URL http://arxiv.org/abs/1111.4503

[10] A. J. Chaney, B. M. Stewart, B. E. Engelhardt, How algorithmic con-

founding in recommendation systems increases homogeneity and decreases

utility, arXivarXiv:1710.11214, doi:10.1145/3240323.3240370.

[11] R. Baeza-yates, Bias in Search and Recommender Systems, in: RecSys

’20: Fourteenth ACM Conference on Recommender Systems, 2020. doi:

10.1145/3383313.

URL https://dl.acm.org/doi/fullHtml/10.1145/3383313.3418435

[12] R. Baeza-Yates, Bias on the web, Communications of the ACM 61 (6)

(2018) 54–61.

[13] M. Mansoury, H. Abdollahpouri, M. Pechenizkiy, B. Mobasher, R. Burke,

Feedback loop and bias amplification in recommender systems (2020).

arXiv:2007.13019.

[14] G. Adomavicius, J. Bockstedt, S. Curley, J. Zhang, De-Biasing User Pref-

erence Ratings in Recommender Systems, in: Proceedings of the Joint

34

Workshop on Interfaces and Human Decision Making for Recommender

Systems co-located with ACM Conference on Recommender Systems (Rec-

Sys 2014), 2014.

URL http://ceur-ws.org/Vol-1253/

[15] N. Mehrabi, F. Morstatter, N. Saxena, K. Lerman, A. Galstyan, A survey

on bias and fairness in machine learning, arXiv preprint arXiv:1908.09635.

[16] R. Baeza-Yates, D. Saez-Trumper, Wisdom of the crowd or wisdom of a

few?, Proceedings of the 26th ACM Conference on Hypertext & Social

Media - HT ’15doi:10.1145/2700171.2791056.

URL http://dx.doi.org/10.1145/2700171.2791056

[17] S. Wu, J. M. Hofman, W. Mason, D. J. Watts, Who says what to whom

on twitter, in: Proceedings of the 20th International Conference on World

Wide Web, 2011.

[18] J. Chen, H. Dong, X. Wang, F. Feng, M. Wang, X. He, Bias and debias

in recommender system: A survey and future directions, arXiv preprint

arXiv:2010.03240.

[19] J. Chen, Y. Feng, M. Ester, S. Zhou, C. Chen, C. Wang, Modeling users’

exposure with social knowledge influence and consumption influence for rec-

ommendation, in: Proceedings of the 27th ACM International Conference

on Information and Knowledge Management, 2018, pp. 953–962.

[20] X. Wang, Y. Wang, D. Hsu, Y. Wang, Exploration in interactive person-

alized music recommendation: A reinforcement learning approach (2013).

arXiv:1311.6355.

[21] G. Adomavicius, J. C. Bockstedt, S. P. Curley, J. Zhang, Reducing rec-

ommender system biases: An investigation of rating display designs, MIS

Quarterly 43 (5) (2019) 1321–1341. doi:10.25300/MISQ/2019/13949.

35

[22] Connecting user and item perspectives in popularity debiasing for collab-

orative recommendation, Information Processing & Management 58 (1)

(2021) 102387.

[23] H. Abdollahpouri, R. Burke, B. Mobasher, Managing popularity bias in

recommender systems with personalized re-ranking (2019). arXiv:1901.

07555.

[24] H. Abdollahpouri, R. Burke, B. Mobasher, Controlling popularity bias in

learning-to-rank recommendation, in: Proceedings of the Eleventh ACM

Conference on Recommender Systems, 2017, pp. 42–46.

[25] P. Nesi, G. Pantaleo, I. Paoli, I. Zaza, Assessing the retweet prone-

ness of tweets: predictive models for retweeting, Multimedia Tools and

Applications (77) (2018) 26371–26396. doi:https://doi.org/10.1007/

s11042-018-5865-0.

[26] L. Belli, S. I. Ktena, A. Tejani, A. Lung-Yut-Fon, F. Portman, X. Zhu,

Y. Xie, A. Gupta, M. Bronstein, A. Delić, G. Sottocornola, W. Anelli,

N. Andrade, J. Smith, W. Shi, Privacy-aware recommender systems chal-

lenge on twitter’s home timeline (2020). arXiv:2004.13715.

[27] R. Dorfman, A formula for the gini coefficient, The review of economics

and statistics (1979) 146–149.

[28] D. Saha, A. R. Kemanian, F. Montes, H. Gall, P. R. Adler, B. M. Rau,

Lorenz curve and gini coefficient reveal hot spots and hot moments for

nitrous oxide emissions, Journal of Geophysical Research: Biogeosciences

123 (1) (2018) 193–206.

[29] Z. Szlávik, W. Kowalczyk, M. Schut, Diversity measurement of recom-

mender systems under different user choice models, in: Fifth International

AAAI Conference on Weblogs and Social Media, 2011.

36

[30] F. M. Harper, J. A. Konstan, The movielens datasets: History and context,

ACM Trans. Interact. Intell. Syst. 5 (4). doi:10.1145/2827872.

URL https://doi.org/10.1145/2827872

[31] E. Bernhardsson, Annoy: Approximate Nearest Neighbors in

C++/Python, python package version 1.13.0 (2018).

URL https://pypi.org/project/annoy/

[32] T. Chen, C. Guestrin, XGBoost: A scalable tree boosting system, in: Pro-

ceedings of the 22nd ACM SIGKDD International Conference on Knowl-

edge Discovery and Data Mining, KDD ’16, ACM, New York, NY, USA,

2016, pp. 785–794. doi:10.1145/2939672.2939785.

URL http://doi.acm.org/10.1145/2939672.2939785

[33] S. Rendle, Factorization machines, in: 2010 IEEE International Conference

on Data Mining, 2010, pp. 995–1000. doi:10.1109/ICDM.2010.127.

[34] H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye,

G. Anderson, G. Corrado, W. Chai, M. Ispir, et al., Wide & deep learning

for recommender systems, in: Proceedings of the 1st workshop on deep

learning for recommender systems, 2016, pp. 7–10.

37

View publication statsView publication statsView publication statsView publication stats

https://www.researchgate.net/publication/353513190

