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Stefano SAVIAN, Mehdi ELAHI, Tammam TILLO

Abstract One of the many components used in Biometrics is optical flow estimation.
This could be due to the fact that motion is an inseparable attribute of our (visual)
world and hence it is a valuable resource of data needed to tackle many real-world
problems. Indeed, technologies that use object detection, motion detection, object
tracking, gait recognition as well as video compression heavily rely on optical flow
estimation. This chapter explores recent advances in optical flow estimation, while
mainly focusing on estimation techniques based on Deep Learning (DL). In fact,
recent advancements in deep learning are seemingly making a shift in the optical
flow estimation research field. This chapter begins with reviewing traditional (hand-
crafted) approaches, then introduces the more recent approaches, and finally gets
concluded with surveying deep learning approaches.

Key words: optical flow estimation, deep learning, convolutional neural network

1 Introduction

Biometric Systems attempt to detect and identify people based on certain physiolog-
ical characteristics, e.g., fingerprints and face, or even behavioural characteristics,
e.g., signature and gait. In recent years, there has been a large development in
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biometric systems, thanks to advances in Deep Learning (DL). DL techniques lever-
age the hierarchical architectures to learn discriminative representations and have
contributed to some of the top performing biometric techniques. These techniques
have also fostered numerous successful real-world biometric applications, e.g., face
recognition and face identification [96].

Gait recognition can be a good example of a behavioral biometrics that uses the
shape and motion cues of a walking person for identification. Gait could be performed
at a distance, in contrast to the other biometric approaches such as fingerprint or
iris scan [53]]. The shape features are captured during gait phases, while motion
features get captured during the transition between these phases. Still there are
challenges in gait recognition, including variations in clothing, footwear, carrying
objects, complicated background and walking speed [96, 88]]. Motion clues can be
obtained, even without involving additional hardware (e.g., accelerometers and lidar
[95]]), instead by extracting motion from the captured video [S3]]. For example, Xiao
et. al. [103] obtained the very good performance by explicitly using the motion
information, i.e., optical flow, as the input in a simple pose estimation framework.
Motion estimation involves the estimation of optical flow which is the projection of
3D motion into 2D plane of the camera. Nonetheless, the “global” motion provided
by the optical flow is composed of the motion of the objects in the scene and the
ego-motion, i.e., the motion of the camera.

Optical flow estimation has a long history, and much research has been carried
since the pioneering methods of Horn and Shunk [30] and Lucas Kanade [51]]
have been published in 1981. Hence, through more than 3 decades of history, there
is a massive improvement of techniques used for different aspects of optical flow
estimation[T] In the particular case of small displacements, the problem of optical flow
estimation has been almost completely solved [[22]. The remaining challenges can be
listed as: (i) fast motion, (ii) illumination changes, (iii) occlusions, and (iv) untextured
regions. In these challenges, the optical flow estimation problems become ill-posed
and hard to treat, analytically. However, very recent approaches have come after the
wave of DL progress which had a massive impact on this field of research. Still this
chapter would take advantage of the noted survey [22] (see the footnote), in assisting
to review not only the current state-of-the-art optical flow estimation techniques but
also highlighting the benefits and limitations of traditional approaches. Nonetheless,
in order to motivate and explain the reasons behind the success of DL based optical
flow estimation, the authors will show how some classical based top performing
methods resemble a deep structure a keen to convolutional neural networks.

To sum up, to obtain high-level understanding of video contents for Computer
Vision tasks, it is essential to know the object status (e.g., location and segmentation)
and motion information (e.g., optical flow) [[17]. Hence motion estimation is a valid
data source to obtain non-intrusive and remote high quality biometrics.

Optical flow estimation is a fast evolving field of computer vision and to the
authors’ knowledge, there is only one comperhensive review by Tu ez. al. [93]], which
surveys classical and DL based methods for optical flow. Nonetheless, this chapter

! In a valuable work, early history of the field has been surveyed by Fortun et. al. [22]. This work
reviews the traditional works, and does not cover the very recent progresses.
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provides a (more systematic) comparison of DL methods, and gives a slightly differ-
ent categorization of DL methods (compared to the related works) and introduces a
novel class of Hybrid methods. Readers are kindly pointed to Tu et. al. survey [93]
for more detailed descriptions of performance measures for optical flow, optical flow
color code, and optical flow applications (besides biometrics ones).

In conclusion, this chapter briefly reviews optical flow estimation methods, which
can be used mainly in biometric applications. More particularly, it focuses on how
the field of optical flow is evolving, what are the benefits and limitations of DL based
methods, as well as what do DL and classical approaches have in common. The rest
of the chapter is organized as follows:

In Section [2] a brief introduction to DL is provided. In Section [3] optical flow
estimation is discussed by mainly reviewing the traditional approaches. Then DL for
optical flow approaches are described and compared. This section continues with
introducing the Hybrid approaches. Section [ provides further discussions and lists
a number of applications of the optical flow estimation in biometrics. The chapter is
finalized with Section[5]by providing the conclusion.

2 Deep Learning

Deep Learning (DL) is a class of signal processing architectures which consist
of connecting and stacking different convolutional layers and non-linear activation
functions in order to generate flexible predictive models. These models are typically
tuned by the Backpropagation algorithm using the target information, to indicate how
much the (internal) parameters should be updated [45]. Deep learning is blooming
and it already enables noticeable steps forward in various engineering applications,
and influencing many signal processing fields, e.g., Image Classification, Natural
Language Processing (NLP), and Time Series Analysis. A notable comprehensive
overview of the Deep learning field has been authored by LeCun, Bengio, and Hinton
[45]]. The book from Goodfellow et. al. is also considered a milestone on this topic
[25]]. Tt covers the main techniques, including the Convolutional Neural Network
(CNN), that is heavily used in Computer Vision. There is a lot of material on Deep
learning models and applications and the reader is invited to further investigate
the above mentioned papers or books, if interested for more details. Here existing
(generic) architectures which have been tailored to optical flow estimation are briefly
reviewed. It is assumed that the reader has a basic knowledge on the field, as it is not
possible to describe all the technical details.

* The state-of-the-art CNN for image recognition: the pioneering work on this
field is LeNet from LeCun et. al. [46], a 7 layer CNN, used for digit recog-
nition. Subsequently, The ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [79] was introduced to foster the development of models for visual
recognition. AlexNet (see Krizhevsky et. al. [43]) uses a similar architecture
as LeNet, but it is deeper, with more filters per layer, and with stacked convo-
lutional layers. GoogleNet, Szegedy et. al. [89] also known as InceptionNet is
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inspired by LeNet but implemented a novel element which they called inception
module, GoogleNet achieved very high performance in ILSVRC 2014. VGGNet,
Simonyan et. al. [81] consists of 16 convolutional layers and a very uniform ar-
chitecture, however, it has a massive number of parameters (i.e., 138 Millions)
to train. The winner of ILSVRC 2015 is Residual Neural Network (ResNet),
Kaiming He et. al. [29]. This architecture introduced skip connections between
convolutional layers. Thanks to this innovative technique, they were able to train
a network with 152 layers while still having lower complexity in comparison
to VGGNet. It achieves a top 5 error rate beating other baselines on ImageNet
dataset.

¢ Fully Convolutional Networks (FCNs): CNN models where every layer is con-
volutional, FCNs obtain very good performance in image segmentation, e.g.,
Long et. al. [49]. Additionally, U-Nets are FCNs specifically designed to produce
accurate segmentation even with a relatively small dataset, Ronnenberger et.al.
(78]

* Siamese Networks Koch et. al. [41] (originally introduced by Bromley et. al.
[[LO]), are a class of neural network architectures that contain two or more identical
subnetworks. The subnetworks have the same configuration and share the same
parameters. Parameter updating is mirrored across both subnetworks. Sharing
weights across subnetworks leads to less learnable parameters, thus less tendency
to overfit. Siamese Networks output is usually a one dimensional feature vector
which indicates a similarity or a relationship between two comparable (input)
things.

* Generative Adversarial Networks (GANs): originally introduced by Goodfel-
low et. al. [26] are generative algorithms that can generate new data instances
by learning the distribution of the input data. Differently from the previous ar-
chitecture which are discriminative, GANs can learn to produce new data. One
network, called the generator, generates new data instances, while the other, the
discriminator, evaluates them for authenticity.

Although the deep learning based optical flow architectures could vary dramatically,
still all the techniques presented in this chapter are drawn from the above mentioned
models.

3 Optical Flow

Before discussing further the optical flow, we note that, traditionally, optical flow
estimation rely on two assumptions:

* Assumption I: pixel intensity remains unchanged along motion trajectory
* Assumption 2: motion appears locally as a translation.

Lets denote D as motion displacement vector in a two dimensional space and T
as the temporal sampling step; By having D vector with the positional displacement
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among 2 frames, we can compute the motion velocity vector V according to the
following formula:

. D
vepm7 ®
W(x’y’t) = u(x’y’t)’v(x’y’t)71 (2)
WTVf(x,y,t)+%f(x,y,t) =0 3)

Eq.[3]is known as the Optical Flow Equation, where f is a 3 dimensional spatio-
temporal field depending on the coordinates x,y and time ¢, and u and v are the
displacements respectively along x and y axes (a detailed explanation can be found
in [69]]). The optical flow is defined as a 2 layers matrix with the same height and
width of the input frame, where each of the two layers gives the offset of each pixel
movement, where layer v is along y axis and layer u along x axis.

One of the earliest techniques proposed to solve the optical flow equation (Eq[3)
are Variational Methods. As an example, Horn Schunck (HS) [30]] approach (1981)
adopted the minimization of a cost function where mean squared error with a reg-
ularization term has been sued. A work by Lukas-Kanade [51] from the same year
proposed the minimization of an iterative cost function under slightly different as-
sumptions, i.e., velocity vector V being constant in local patches, i.e. Patch Based
Methods. However, both approaches have drawbacks. For example, the motion be-
tween 2 frames must be sufficiently small, the equations when discretized increase
noise and locality assumptions result in poor motion accuracy [19].

3.1 Traditional Methods

In this section, we discuss mainly the traditional methods for optical flow estimation
(see Table/[T).

3.1.1 Variational Methods

One of the earliest class of optical flow [} estimation methods were variational
approaches. This class of approaches computes optical flow as the minimizer of an
energy functional. One of the most effective and most simple variational methods
has been developed by HS [30]. By exploiting the Brightness Constancy Equation
(BCE) assumption and thus considering horizontal and vertical displacements to be
sufficiently small, one can linearize the optical flow equation. Variational approaches,

2 There is a slight difference between optical flow and flow fields, however, in computer vision
these two term are usually used interchangeably [22].
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hence, estimate the (optical flow) interframe displacement w by minimizing E, Eq.

[l
E(w) = (D(u, v) +aS(u,v)|dxdy “)
Z/

Where D is a term that penalizes deviations of the data from the BCE and
S is a smoothing term; Q is the image region of locations x,y. All variational
approaches aim at minimizing an energy function similar to E but exploiting different
properties of the data, e.g., Gradient constancy Brox and Malik (BM) [[L1], higher
order derivatives Papenberg et. al. [67], color model Mileva et. al. [61] and Zimmer
et. al. [116]. Variational methods are biased towards the initialization which is usually
the zero motion field because of all local minima, this approach selects the one with
the smallest motion, which is not necessarily the correct solution [12].

3.1.2 Patch based methods

Methods based on Lucas Kanade (LK) approach work on the discrete domain: the
two frames are divided into patches (regions) of fixed sizes, matched by minimizing
a gradient. Accordingly, LK uses Newton-Raphson Technique for cost minimization.
Most of the coarse-to-fine methods apply variations of LK on the frame, at different
levels of granularity by looking for correspondences, first on a more large area, and
then moving to smaller patches; or alternatively, by producing a rough estimate of
the optical flow by downsampling the frames (see Fig. [I). Patch based methods are
biased by the motion of large scale structures. The coarse-to-fine approaches have the
drawback of hardly detecting small fast moving objects when the motion of bigger
structures (or camera motion) has an overall high magnitude. Similarly to variational
approaches, patch based methods have been improved very much, where majority
of the improvements involve a different computation of the descriptor function. A
descriptor is a function which is applied to all patches, used to produce a vector of
similarities. Scale Invariant Feature Transform (SIFT) [50] and histogram of Oriented
Gradients (HOG), as well as DAISY [91] are well-known descriptors which have
been used in many computer vision field including optical flow estimation (e.g.,
(470).

3.1.3 Patch based with variational refinement

A first unifying method was proposed by Brox and Malik (BM) [12] representing a
big shift in performance of optical flow estimation. Brox and Malik formulate the
problem of optical flow estimation in a variational refinement, but introducing an
additional energy term Egescriprors oOn SIFT and color. Many methods based on
BM have a descriptor stage, a matching stage and a (variational) refinement stage to
interpolate the optical flow in a sparse to dense manner.
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Fa Estimated Fri1
OF

Fig. 1 Example of three layers frame pyramids. Input frames F,,, F, are downsampled: Lo
are the input frames at native resolution, L;, L, are the frames downsampled one and two times
respectively. The optical flow is iteratively refined starting from the most downsampled frames.
The initial optical flow (OF) is computed first at the lowest resolution L, (OFinit), upsampled and
used as initial estimate for the next higher resolution layer, refined (OFref) and upsampled until the
final high resolution layers.

For the matching stage, different techniques have been proposed over time (an
overview can be found in [22]). In this part, we additionally review very recent
developments of patch based with variational refinement (state-of-the-art at the time
of publishing) that have been further improved by the partial integration of DL
architectures, as described in Sec[3.6

PatchMatch [7] is a general purpose computer vision algorithm to match arbitrary
descriptors using K-Nearest Neighbors algorithm in a coarse-to-fine manner with
random initializiation. FlowFields [4] is similar to PatchMatch for the propagation
stage, but uses a kd-tree (a specific type of binary tree) to compute initial matches.
Also noticeable is DiscreteFlow [60] which computes patch similarities in the dis-
crete domain, using DAISY descriptors to find pixelwise correspondences among
neighboring frames, and processing the vector of similarities with a Conditional
Random Field (CRF), without coarse-to-fine optimization. Finally, FullFlow [16]
also optimize an energy function as a CRF, over discrete regular grids.
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A noticeable different approach, inspired by the success of Brox and Malik, is
DeepFlow, Weinzaepfel et. al. [98]. DeepFlow is a variational optical flow with an
additional loss function based on a deep matching algorithm on a classical variational
framework which allows to integrate feature descriptors and matching. DeepFlow, is
non-parametric and is based on a fine-to-coarse approach. Two consecutive frames
are divided in four by four patches which are then convolved producing three dimen-
sional response maps. The convolution operator outputs a stack of response maps
providing higher values where patches have similar patterns. Subsequently, the ob-
tained feature maps are convolved with larger patches to find coarser matches, with
a structure a keen to CNN, but with no learnt parameters. This process is recursively
applied to coarser patches. Finally all the feature maps, which are obtained by convo-
lutions at different level of granularity, are processed: higher activation of the feature
maps mean higher similarity among patches. A local maxima is computed to find
dense matches (correspondences), which are then used to compute the optical flow.
DeepFlow most important innovation is its matching algorithm, DeepMatching [76]],
which has been used as descriptor and matching algorithm. Compared to various
classical methods mentioned using i.e. SIFT and HOG, DeepMatch obtains simi-
lar performance for small displacements, while drastically outperforming classical
methods on large displacements. For these reasons, many top performing methods,
make use of DeepMatch along with different variational refinement methods (see

Fig.[2).

DeepMatching

N

DeepFlow EpicFlow RichFlow

Fig. 2 Sparse to dense refinement methods applied to DeepMatching. DeepMatching algorithm is
used to compute correspondences which can be refined by DeepFlow, EpicFlow or RichFlow.

EpicFlow is one of the recent methods for refinement and post-processing task
(Revaud et al. [75]) and it has been adopted by several works [104} 3} 15,161 132, [108]).
EpicFlow is built on DeepMatch and random forests; DeepMatch is used to compute
matches, while structured forest (Structured Edge Detectors SEDs Dollar et. al. [[18]])
are used to compute image edges, exploiting the local structure of edges by looking
at the information gain of random forests. The additional edges information allows
to further densify the sparse matches and improves the variational refinement energy
function. The energy function is further improved by using geodesic distance instead
of euclidean distance, obtaining a more natural model for motion discontinuities
(further details in the paper [[75]). EpicFlow further improves DeepFlow on large
discontinuities and occluded areas, nonetheless outperforms all state of the art (clas-
sical) coarse-to-fine approaches.

Due to its performance, EpicFlow has been integrated in Robust Interpolation of
Correspondences for Large displacement optical flow (RicFlow), Hu ez. al. [31].
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RicFlow is based on Epicflow in the sense that uses DeepFlow and SED to compute
the flow. Additionaly to EpicFlow, the input images were segmented in superpixel,
to improve the method over input noise and provide a better initialization. RicFlow
was among the best performing state-of-the-art methods on Sintel clean pass at the
time of publishing.

Table 1 Overview of handcrafted methods; the handcrafted methods mentioned here are not real-

time

PAPER

YEAR CONTRIBUTION BUILDS ON LIMITATION

REF.

DeepFlow .

2013 D.eepMatchmg. . BM [11]] Sparse matches

98] Fine-to-coarse image pyramids

EpicFlow . .
Improved matches interpolation . .

2015 . DeepMatching Input noise

(73] Used in [104] (3151 [161(32][108] [76]. SED [I8]

RicFlow Further improved EpicFlow . Strongly relies on

2017 . . EpicFlow .

1] interpolation (dense) input matches

FlowFields

2015 Binary tree for patch matching EpicFlow Handcrafted features for

(41 match

DenseFlow Segmentation. Computationally

2013 . EM .

(84 Fully-connected inference method Expensive

ProbFlow HS

2017 Predicts optical flow and uncertainty - Small EPE improvement

7] FlowFields

DiscreteFlow

2009 Uses CRF to reduce patches See [22] Semi-dense optical flow
search space

160]

CPM

2016 Discrete coarse-to-fine PatchMatch ~ Small details are lost

[32] [7] EpicFlow

3.2 Deep Learning Approaches

In the previous section, it has been shown that DeepFlow, one of the top performing
handcrafted algorithms resembles a convolutional structure similar to deep learning
models, but with no learnt parameters. Perhaps triggering a new line of research
based on deep convolutional structures in the field of optical flow estimation. In this
section, advances of models based on deep learning are reviewed (see Table[2]).
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3.2.1 Development of DL based Optical Flow Estimation
Single and Stacked Architectures

The first deep learning optical flow architecture has been introduced by Fisher et.
al. and named FlowNet [19], FlowNet directly estimates the optical flow using a
generic CNN U-Net architecture [78]. Due to the lack of data with optical flow
groundtruth the authors generated a new dataset: “Flying Chairs”, Meyer et. al. [S7]],
which is a synthetic dataset with optical flow ground truth. It consists of more than
20K image pairs and corresponding flow fields of 3D chair models moving with just
affine motion in front of random backgrounds. This dataset is necessary for network
convergence, since CNN typically has a very large number of trainable weights (tens
of Millions) requiring a considerable number of input data to avoid overfitting.

The original paper proposes two slightly different model architectures FlownetS
(Flownet Simple) and FlownetC (Flownet Correlation). FlownetS consists of a CNN
receiving two stacked input RGB frames which are then supervisely trained on the
optical flow groundtruth. Similarly, FlowNetC is also supervisely trained on the
groundtruth, but instead of working with a stacked input the two frames are fed to
two identical branches which are merged on a later stage by a correlation layer, the
correlation layer perform cross-correlation (cost volume) between the feature maps
of the two input, enabling the network to compare each patch with no additional
learnt parameters (at the correlation layer).

Both networks, upsample feature maps by upconvolutions at the output side of
the network to increase the resolution of the computed optical flow, degraded by the
stacked convolutions and pooling layers at the contractive side of the network (see
Fig.[3). The expanding part of the network is composed of “upconvolutional" layers:
unpooling and deconvolution. There are 4 upconvolution layers in the refinement
part and for computational reasons the flow is finally upsampled to full resolution by
bilinear upsampling. Skip connections are used to connect layers on the contractive
part to the expanding (refinement) part providing additional information of flow level
features at the upsampling stage.

Data augmentation is very important for model generalization. Augmentation has
been performed in place both to the image pair and to the grountruth flow fields,
it includes geometric transfomations, gaussian noise, multiplicative color and ad-
ditive brightness changes. Finally, the authors trained the network by minimizing
the squared error on endpoint error EPE. As said previously, EPE is the euclidean
distance between network estimates and groundtruth flow. For further details on EPE
and other optical flow metrics please refer to Tu et. al. [93]]. Training on EPE is not
optimal for small displacements, as the euclidian distance only gives information on
the error magnitude while omitting error direction information, however it allows
the architecture to perform well in case of large displacements such as in the Sin-
tel benchmark. One important discovery is that although FlowNetS and FlowNetC
have been trained on synthetic data, they can also perform well on natural scenar-
ios. However, the main drawback is the low accuracy in case of small and simple
movements which instead are conditions where traditional methods perform well.
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Fig. 3 FlowNetC architectures [[19].

A second drawback is the over-smoothed flow fields produced, and the fact that a
variational post-processing stage is required, as noticed by Hui er. al. [34].

To overcome FlowNet limitations, Ilg et. al. proposed FlowNet 2.0 [37], which
stacks FlownetC and FlownetS and new designed FlowNet-SD (Small Displacement)
to perform the flow estimation. Flownet-SD (see Fig.[), has larger input feature maps
and is trained on a dataset with small displacement, ChairsSDHom. Furthermore,
after each subnetwork the flow is warped and compared with the second image and
the error is fed to a fusion network that takes as inputs the estimated flows, the flows
magnitudes and the brightness error after warping. The fusion network contracts and
expands to full resolution producing the final flow fields.

Due to the large size of FlowNet 2.0, i.e., around 38 Millions parameters (see Table
M), its subnetworks have been trained sequentially by training one subnetwork while
freezing the weights of the others. Moreover, the authors have generated a new more
realistic dataset, Things3D to be robust to untextured regions and to produce flow
magnitude histograms close to those of the UCF101 [83]] dataset, which is composed
of real sequences. A very important finding is the impact of training schedule on
network performance. Solely training on the more complex Things3D is worse
than using the simpler FlyingChairs, and training on a mixture of FlyingChairs and
Things3D also does not lead to better performance. The order of presenting the data
affects model accuracy; the best schedule is training on FlyingChairs and finetuning
on Things3D. Also subnetworks FlowNetS and FlowNetC can benefit of around 20-
30 % of improvement when trained with the above mentioned schedule. The authors
conjecture is that FlyingChairs allows the network to learn color matching and that
the refinement with Things3D improves performance under realistic scene lighting.
Flownet 2.0 outperforms EpicFlow, and obtain state of the art performance on Sintel
final pass, at the time of publishing.

FlowNet and FlowNet 2.0 are important milestones of optical flow estimation
and serve as building block for other methods. Ilg et. al. modified FlowNetC to
estimate the confidence interval on the estimated optical flow in [36]. Xian et. al.
[102] use FlowNetS and add a multi-assumption loss function (brightness constancy,
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gradient constancy and image-driven smoothness assumption) in the expanding part
during the network training. On the contrary, FlowNet 3 (Ilg et. al. [38]) further
improves FlowNet 2.0, by taking out the small displacement network, removing
explicit brightness error and, add residual connections in the stack based on [66].
They also modified the stack and in particular FlowNetC to jointly compute forward
and backward flow consistency and estimate occlusions. The authors demonstrate
that efficient occlusions estimates come at no extra cost.

Image 1 Image 1
-~ [ Womed
FlowNetC \ FlowNetS \
1
ERend -

lnow‘

Imago 2 ‘ Brightness
Error

Flow

Brightness
Error

pg-=

FlowNet-SD Flow
Magnitude
Lo s
Small Displacement
Tmage 2

Fig. 4 FlowNet 2.0 architecture [37], which consists of FlowNetS and FlowNetC stacked.

Coarse-to-Fine Iterative Refinement

The first coarse-to-fine end-to-end approach is proposed by Ranjan et. al., proposing
Spatial Pyramid Network (SpyNet) [[71]], which combines the classical coarse-to-fine
approach for optical flow estimation with deep neural networks. At each level of the
pyramid a CNN is trained independently, meaning that each level of the pyramid
(independently) deals with motion within a certain boundary of displacement. This
architecture allows SpyNet to perform at different magnitudes of displacement. In
fact, since every level of the pyramid deals with a fixed range of motion, the final
optical flow is produced by iteratively up-sampling the coarse optical flow estimates
and warping it with higher resolution frames. Hence, at each level of the pyramid L,
a pixel motion at the top level corresponds to 25! pixels at the full resolution [87]
(see Fig. [T). Coarse-to-fine iteration benefit the estimates as there is no need for a
full computation of the cost function, which is a bottleneck for real-time optical flow
estimation.

The authors show how SpyNet improves the results of FlowNet which perform
badly in case of small movements, while obtaining the same performance in case
of large motion. Nonetheless, SpyNet has 96 % less weights compared to FlowNet,
consisting “only” of 1 Million parameters, one order of magnitude less than FlowNet
and two compared to FlowNet 2.0, (Sec. [3.3] for further insights on the number of
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Following this line of research, Sun et. al. [86] presented PWC-Net. PWC-net is
a pyramidal coarse-to-fine CNNs based for optical flow estimation. PWC-net uses
pyramid, warping, and cost volume (see Fig[3). The network is trained end-to-end
in a similar manner as SpyNet, however with some differences: i) SpyNet warps
frames with coarse estimates of the flow, while PWC-net warps feature maps, ii)
SpyNet feeds CNN with frames while PWC-net inputs a cost volume iii) PWC-
net data augmentation do not include Gaussian noise (more details in Sec. [3.4).
PWC-net image pyramids are end-to-end learnable and the cost volume is produced
exploiting FlowNetC correlation layer. Finally PWC-net uses a context network to
exploit contextual information for refinement. PWC-net is outperforming all methods
to date in the challenging Sintel final pass[4.2} It is the first time that an end-to-end

R ﬁ ( ﬂ [ 4 j Cost volume
)/

CNN

Frame 2

Fig. 5 PWC-net architecture [86].

method outperforms well-engineered and fine-tuned traditional methods. At the time
of writing PWC-net is still the top performing two frames optical flow estimator on
Sintel final and it is used as building block for the top performing multi-frame optical
flow estimators Neoral et. al. [[62]] and Ren et. al. [74]]. Finally, Inspired by PWC-net,
Fang et. al. [21]], Hui et. al. [34] and [21]] proposed similar methods, but with lower
performance.

3.2.2 Other Important DL based Methods
Multi Objective

Optical flow is an important piece of information for motion segmentation and action
recognition. Ilg et. al. already show how the flow fields generated by FlowNet 2.0
matches and outperforms classical optical flow methods, when plugged into the
CNN temporal stream of Symonyan et. al. [81]. This configuration produces high
level action recognition. The state-of-the-art performance has been obtained also in
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motion segmentation, by plugging the optical flow of FlowNet 2.0 to [40] and [65].
Moreover, Cheng et. al [17] further elaborate the idea and propose one unified Deep
Learning framework, called SegFlow, for joint estimation of object segmentation and
optical flow. SegFlow architecture has two branches: FlowNetS for the optical flow
and aresidual CNN, Resnet-101 [29]]. Feature maps are merged between two branches
at the final layers. Training is done iteratively: weights are initialized according to
FlowNetS and ResNet-101. When optimizing the segmentation branch, the optical
flow branch weights are frozen. The segmentation is trained on the DAVIS dataset
[68], with additional affine data augmentation. Similarly, when training the optical
flow, the segmentation branch is fixed and weights are only updated in the flow
network using optical flow datasets with groundtruth: Sintel, KITTI, Monkaa and
Driving, Sec. Both networks benefit from each other and the results are state-
of-the-art for both segmentation and optical flow estimation, with accuracy doubled
compared to FlowNet.

Indirect-supervised and Semi-supervised Methods

Indirect-supervised approaches treat the optical flow estimation as a frame recon-
struction problem. Although these unsupervised methods do not need to use large
datasets as training samples, the overall accuracy is slightly inferior to the supervised
approaches. These methods still need to be trained with groundruth data to tune their
weights, but they do not need specifically optical flow groundtruth data to model the
optical flow. Instead they use a proxy task i.e. frame synthesis. All of the methods
below rely on frame warping which is a differentiable operation and allow backprop-
agation for network tuning (see Table 3. Differences among indirect-supervised are
rather small and mostly involve different constrains on the cost function: photometric
or geometrical error function. Thus a common optical flow estimation pipeline is:
i) let the network estimate the flow fields, ii) warp the frame with the flow fields,
iii) measure the photometric loss between the synthetized frame and the groundtruth
[100].

Ahmadi and Patras [[1] presented a method for training a CNN using the UCF101
dataset [83] for motion estimation without explicit optical flow groundtruth data,
instead of exploiting the optical flow equation, Eq. [3] similarly to traditional HS. The
architecture proposed is very similar to FlowNetS and it has been trained on the real
scenario dataset UCF101. Performance on Sintel are very close to FlowNetS and
FlowNetC. Yuet al. [39]] also design a network similar to FlowNetS, with a photomet-
ric loss function. Zhu [[114] et. al. also use FlowNetS trained on photometric loss, but
initialize the learning on proxy ground truth provided by FlowFields [4]. Ren et al.
[73] also train FlowNetS on frame interpolation error, but with an additional nonlin-
ear data term. Niklaus et. al. [64] jointly perform interpolation and flow estimation,
with results comparable to FlownetS. Long et al. [48]] train a CNN for optical flow
estimation by interpolating frames, with some more minor differences. An U-net is
trained to synthesize the middle frame in the training phase. Afterwards, the frame
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Table 2 Overview of deep learning methods. * =top among methods working with frame pairs

PAPER

YEAR CONTRIBUTION BUILDS ON LIMITATION

REF.

ContinualFlow Top Performing (Sintel final pass)

. R PWC net, .

2018 Occlusion estimates GRU Not top on Sintel clean

162] Multiple frame

MFF

2018 Multiple frame PWC net, Not top on Sintel clean

[74]

g(l)()l\;/Net First DL model U-net Artifacts for small motions

(19] Oversmoothed flow

g(l)c;vgNetZ.O Stacked FlowNetS and FlowNetC FlowNetS, High number of weights

7] Improved training schedule FlowNetC

FlowNet3 .

2018 fézzzzgcc}?’;ﬁiWD/BCK ResNet, High number of weights

1381 FlowNet2.0

FlowNetH

2018 Confidence Measures FlowNetS-C ~ Focus only on confi-

136] dence estimates

SpyNet End-to-end . . .

2017 Coarse-to- Piecewise training

Coarse-to-fine on frames

[71]] fine, U-net

PWC-Net Top on Sintel final* SpyNet

2018 Coarse-to-fine on features py~e Not top on Sintel clean
FlowNetC

186] Cost volume layer

SegFlow . .

2017 lssfog\;nzg:r‘::;’;‘oind optical FlowNetS,  Two times EPE w.r.t. Ist

[L7] ResNet ranked

Xiang et. Al.

2018 Traditional priors on cost function FlowNetS Small improvement

(102}

Fang et. al.

2018 Two branch CNN lightweight Coarse-to-fine Not tested on Sintel final

(21]

approach

correspondences are obtained directly through the same network backpropagation, a
process called analysis by synthesis [109]. The network uses triplets of consecutive
frames, the first and last are used as input and the middle frame serves as groundtruth.
Network output is two matrices of gradients with respect to the input; the gradients
are obtained from the network through backpropagation, which produces sensitivity
maps for each interpolated pixel. However the backpropagation pass is computation-
ally expensive and, especially in unstructured or blurry regions the derivatives are
not necessarily well located.Zhu and Newsam [115]] extend DenseNet architecture
[33]] by adding Dense connectivity to FlowNetS layers, however the network accu-
racy is two times worsen if compared to the original FlowNetS. Meister et. al. uses
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a loss based on the CENSUS transform [28]] and check forward and backward flow
consistency, explicity integrating occlusion reasoning.

Other approaches instead use geometrical reasoning for self-supervision. Alletto
et. al. [2]], trained a network to estimate a global homography and a second network
to estimate the residual flow after warping using the homography. The method has
been validated on KITTI, with performance similar to FlowNetS. Vijayanarasimhan
et. al. presented SfM-Net [94] which decomposes scene motion in terms of scene
and object depth, camera motion and 3D object rotations and translations. Given a
sequence of frames, SfM-Net predicts depth, segmentation, camera and rigid object
motions, and converts those into motion fields. Wulff er. al. [100] noticed that not
always the flow fields can be learnt by photometric error due to untextured regions
and lack of context information. They trained a temporal interpolation network on
frame synthesis on large set of videos without involving any prior assumption and
fine tune the network on groundtruth data from KITTI and Sintel. The explicit use of
groundtruth data drastically improves performance, and the architecture outperforms
FlowNetS and SpyNet, at the cost of not being fully unsupervised. Similar to self
supervision, Lai et. al. [44] use GAN. They used a discriminator network trained on
optical flow groundtruth. The discriminator is used in adversarial loss to learn the
structural patterns of the flow warp error without making assumptions on brightness
constancy and spatial smoothness. Once the discriminator network is trained, the
network can be trained in any dataset, providing a loss for unsupervised training.

Yin ez. al. presented GeoNet [110] exploiting geometric relationships extracted
over the predictions of depth, rigid and non rigid parts and then combined as an im-
age reconstruction loss. They separate static and dynamic scene parts. Depth maps
and camera poses are regressed respectively and fused to produce the rigid flow.
Furthermore, the second stage is fulfilled by the ResFlowNet, i.e. Residual FlowNet
using the output from the rigid structure reconstructor, to predict the corresponding
residual signal for handling dynamic objects flow fields. The final flow is a combina-
tion of the rigid and non rigid estimated flow with an additional geometric constrain.
Similarly to GeoNet, Ranjan et. al. [/2] propose a framework for estimation of
depth, camera motion, optical flow and segmentation using neural networks that
act as adversaries, competing to explain pixels that correspond to static or moving
regions, and as collaborators through a moderator network that assigns pixels to be
either static or dynamic. This and GeoNet are among the best unsupervised methods,
however their performance are not comparable to supervised and classical methods
and their benchmarks are mostly from the automotive domain, e.g. KITTI .

3.3 Deep Learning Networks Comparison

One of the challenges of deep learning models is to limit the number of network
parameters to avoid overfitting and reduce memory footprint. Unlike Stacked ap-
proaches, deep coarse-to-fine SpyNet and PWC-net do not need to deal with large
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Table 3 Overview of indirect-supervised learning methods. * = similar architecture

PAPER
YEAR CONTRIBUTION
REF.

BUILDS ON LIMITATION

GeoNet
2018 Rigid and non rigid motion

(L1

ResNet-50 Automotive domain

Ahmadi et. al.
2016 Photometric loss

(]

HS,

Train on DeepFlow
coarse-to-fine

Jason et. al.
2016 Photometric loss and smoothness

1391

FlowNetS Automotive domain

MIND
2016 Analysis by synthesis
48]

Results only on

*
FlowNetS Sintel train

Ren et. al.
2017 Photmetric loss

(73]

FlowNetS*  Low performance

DenseNet
2017 Extends DenseNet
[115]]

DenseNet [33] Large memory footprint

Zhu et. al.
2017 FlowFields proxy groundtruth

(114]

FlowFields Train on FlowFields

Yang et. al.
2018 FlowNet 2.0 proxy groundtruth
107

Rely on FlowNet 2.0,

FlowNet 2.0 explicit ground truth

Wulff et. al.
2018 Fine tune on groundtruth data
[100]

MIND* Groundtruth

UnFlow
2017 Occlusion estimates

58]

Results only on

FlowNetsC Sintel Train

Ranjan et. al.
2018 Multi-objective (segmentation)
[72]

Custom split for

FlowNetC .
evaluation

Lai et. al.
2018 GAN applied to optical flow
(44

FlownetS Uses groundtruth

TransFlow
2017 L1 norm (Charbonnier)
2]

FlowNetS Automotive domain

SfM-Net
2017
[94]

Depth, occlusion mask estimation,
photometric error

FlowNetS* Not tested on Sintel

motions thanks to the image pyramid for the first and feature pyramid for the latter. It
has been shown that coarse-to-fine image and feature pyramids require less weights,
and at the same time lead to state-of-the-art performance for PWC-net. LiteFlownet
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and other minor coarse-to-fine models have not been included as they are not the
first published or top performing methods.

Principles FlowNetS FlowNetC FlowNet2 SpyNet PWC-Net
Pyramid - 3-level 3-level Image 6-level
Warping - - Image Image Feature

single level single level multi-level
Cost volume - -

large range large range small range
#parameters (M) 38.67 39.17 162.49 1.2 8.75
Memory (MB) 154.5 156.4 638.5 9.7 41.1
Forward (ms)  11.40 21.69 84.80 - 28.56

Table 4 Supervised Deep Learning model comparison. Coarse-to-fine approaches require less
parameters and lead to state-of-the-art performance. Data source [87]]

3.4 Optical Flow Datasets

It has been already discussed that it is difficult to obtain the proper data for training
deep optical flow models. For this reason, a fundamental contribution of FlowNet
and FlowNet 2.0 approaches are the (computer graphics) datasets that have been
released to train the networks: FlyingChairs and FlyingThings3D (see Sec[3.2.T).

While very useful, however, it is not still clear how to generate more data that
can generalize well on real world videos. In a recent follow-up paper, Mayer et. al.
[56] performs an in-depth analysis of what are the characteristics of good training
datasets, as research is shifting from proposing models to generate abundant data
for supervised learning. There are further findings reported in the paper: the authors
discovered that i) artificially rendered data can well generalize on real videos, ii) if
training with a single dataset, complex lighting and post processing effects worsen the
performance, iii) training on different datasets with an increasing level of complexity
leads to best performance.

In the following, we briefly describe the training dataset that, to the best of our
knowledge, are the largest with dense optical flow groundtruth:

* FlyingChairs [19] is a synthetic dataset which consists of more than 22K image
pairs and their corresponding flow fields. Images show renderings of 3D chair
models moving in front of random backgrounds from Flickr[}} Motions of both the
chairs and the background are purely planar. FlyingChairs2 contains additional
minor modalities [35]].

e ChairsSDHom [37] is a synthetic dataset of image pairs with optical flow ground
truth. ChairsSDHom is a good candidate for training networks on small displace-
ments, it is designed to train networks on untextured regions and to produce flow

3https://www. flickr.com/
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magnitude histograms close to those of the UCF101 dataset. ChairsSDHom?2
contains additional minor modalities which are discussed in [33]].

e FlyingThings3D [57] is a dataset rendered of image pairs from 3D models (ran-
domly shaped polygons and ellipses) with simple but structured background.
Foreground objects follow linear trajectories plus additional non-rigid deforma-
tion in 3D space.

* Sintel has 1K training frames drawn from the entire video sequence of an open
source movie. Sintel is not sufficient to train a network from scratch [[19]], however,
it can be used for fine-tuning in the context of deep learning. This dataset is mostly
used as challenging benchmark for evaluation of large displacement optical flow
(Sec[.T).

* Monkaa Mayer et. al. [57] contains 8,5K frames, and it is drawn from the entire
video sequence of a cartoon, which is similar to Sintel, but more challenging.
Monkaa contains articulated non-rigid motion of animals and complex fur.

* Playing for Benchmarks Richter ez. al. [77] is based on more than 250K high-
resolution video frames, all annotated with ground-truth data for both low-level
and high-level vision tasks, including optical flow. Ground-truth data (for variety
of tasks) is available for every frame. The data was collected while driving, riding,
and walking a total of 184 kilometers in diverse ambient conditions in a realistic
virtual world.

e KITTI2012 Geiger et. al., [24] contains almost 200 frames of stereo videos of
road scenes from a calibrated pair of cameras and lidar mounted on a car. While
the dataset contains real data, the acquisition method restricts the ground truth to
static parts of the scene thus the main motion is given by the ego-motion of the
camera [57]]. KITTI2015 Menze et. al. [59] (800 frames) is obtained by fitting
3D models of cars to the point clouds. However, the ground truth optical flow is
sparse.

* Driving [57] contains more than 4K frames of virtual scenes in an naturalistic,
dynamic street setting from the viewpoint of a driving car, made to resemble the
KITTI datasets.

It is worth noting that, FlyingChairs and FlyingThings3D contain well textured
background. By ablation studies Meyer et. al. [56]] discovered that background tex-
tures help to better perform on unseen datasets, and yield to best results on Sintel even
though the motion where they have been trained is unnatural. The mentioned dataset
are large enough to train deep CNN with just some additional data augmentation.
Differently, Monkaa contains very difficult motion on repetitive and monotonous
texture which have been found to be counterproductive for training.

3.5 Training Schedule and Data Augmentation

In Sec.[3.2.1] it has been shown that just by retraining FlowNetC with a new schedule,
on FlyingChairs followed by the more refined FlyingThings3D it is possible to
improve its performance by a 20-30% underlying the importance of training schedule.
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Nonetheless, Deqin et. al. in [87] further demonstrate this concept by retraining
PWC-net and FlowNetC. They further increase the accuracy of PWC-net by 10%
and show that it is possible to further improve FlowNetC by 56% solely by retraining
the network with their new training schedule and a smoother data augmentation (i.e.,
no additive Gaussian noise), outperforming the more complex FlowNet2 by 5%.

These results show that if trained improperly, a good model can perform poorly.
Meaning that a fair comparison of deep learning models should consider the same
training datasets and scheduling in order to disentangle model and training data
contributions.

3.6 Hybrid Methods

This class of optical flow estimation techniques integrate end-to-end learnt ap-
proaches with traditional architectures (see Table [5). Two main branches of hybrid
methods can be identified:

* deep feature based: obtained by partially integrating the flow estimation pipeline
with CNN. In this context cost volume, matching or descriptors are obtained by
deep learning while other building blocks are traditional, i.e. variational refine-
ment.

* scene understanding: CNN are used to differentiate frames regions based on
object properties or semantics. This information is integrated with prior knowl-
edge on the motion field, e.g. motion is prominent on foreground objects while
the background has a smoother and more linear motion.

3.6.1 Feature Based

Hybrid Deep learning patch based methods make use of learned matching functions
[L12] [L13] [52]. These architectures have been adopted to extract and match de-
scriptors for optical flow. The most relevant examples are PatchBatch [23]], Deep
DiscreteFlow [27]], DCFlow [104], and Exploiting Semantic Information and Deep
Matching for Optical Flow [3] (which also integrates semantic information, and is
discussed in Sec. [3.6.2). These methods exploit learned matching functions which
are then integrated into handcrafted methods.

As discussed in Sec. [3.1.7]different approaches have been developed to obtain de-
scriptors and aggregate information from local matches. However handcrafted patch
based optical flow estimators are limited by the computational cost of computing
a 4D cost volume [[16] or by number of pixelwise flow proposals at the initializa-
tion stage [60] [7]]. In these cases integrating learned convolutional networks on the
handcrafted pipeline lead to better accuracy and orders of magnitude faster infer-
ence. DCFlow [104] is inspired by [[16] and constructs a cost volume by using a 4
Layer CNN, this cost volume produces a feature space for all pixels in a way that
matching scores are then computed by a simple internal product in this space, refined
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by EpicFlow post processing. Learning feature embedding and matches with a CNN
allows the method to be more resilient to patch appearance changing and make large
search space computationally feasible, nonetheless, the dimensionality of the feature
space allows to find a trade off between computational cost and performance while
drastically requiring less parameters (around 130K) if compared with fully learned
methods.

Deep DiscreteFlow independently train a context network with a large receptive
field size on top of a local network using dilated convolutions on patches. It performs
feature matching by comparing each pixel in the reference image to every pixel in
the target image: matching points on a regular grid in the reference image to every
pixel in the other image, yielding a large tensor of forward matching costs, similarly
to DiscreteFlow a CREF is used for flow refinement. ProFlow is also a MultiFrame
method and is discussed in Sec.[3.7

CPM [32] + RichFlow [31]] + Maurer et. al. [55] ——— ProFlow [54]

Flow Fields [4]] Flow Fields CNN [5]
FullFlow [16] DCFlow [104]
DiscreteFlow [60] Deep DiscreteFlow [27]
PatchMatch [7] PatchBatch [23]|

Yamaguchi et. al. [106] + EpicFlow ———— ESIDM |[3]

3.6.2 Domain Understanding

This section refers to methods which exploit high level semantic of the scene to
obtain prior information on the optical flow. These methods classify the scene into
different regions of similar motion and apply an optimized optical flow model to each
region depending on motion characteristics. These models are known in literature as
“layered models”. A good example is Optical Flow with Semantic Segmentation and
Localized layers (SOF), Sevilla-Lara et. al. [80]. The authors classify scenes into
“Things” (rigid moving objects), Planes (planar background) and Stuff. A different
model is then adapted for each of the three classes to refine DiscreteFlow, Sec.
[3.1.7] Segmentation is performed with CNN by using DeepLab [[15]]. Focus is on the
estimation of “Things” by applying layered optical flow only in the regions of interest
(“Things” can be considered foreground). SOF is based on Sun et. al. [85] a primer
for the idea of embedding semantic information into flow estimation. A similar idea
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was proposed by Sai et. al. [92]] using fully connected models for segmentation jointly
with a variational approach for optical flow, however their evaluation is limited to
frame interpolation for optical flow and the segmentation dataset is limited. Instead,
Bai er. al. [3] exploit semantic information along with deep siamese networks to
estimate matches and thus the optical flow. This method is neither fully end-to-end
nor fully handcrafted, but uses siamese networks to perform the optical flow on
the foreground, and uses a patch based epipolar method, Yamaguchi et. al. [L03]], to
compute the optical flow on the background. In this way, the authors exploits siamese
CNN for patch extraction and matching in areas with complex movement, where
neighbouring frames are fed to each branch of a siamese network to extract features
and the two siamese branches are then combined with a product layer to generate a
matching score for each possible displacement. For the background the authors uses
handcrafted methods for better performance on small and simple motion. This is
an important contribution as integration of learnt functions along with handcrafted
features allow the method to overcome the weaknesses of both traditional methods
(complex movements) and DL based methods (small displacements). However, this
method has been developed to work in the context of autonomous driving where the
scene is typically composed of a static background and a small number of traffic
participants which move “rigidly”.

Finally, Behl ez. al.[8] exploits the semantic cues and geometry to estimate the
rigid motion between frames more robustly and leads to improved results compared
to all baselines. CNNs are trained on a newly annotated dataset of stereo images
and integrated into a CRF-based model for robust 3D scene flow estimation, this
work obtains the lowest outlier percentage in KITTI2015 for non-occluded regions.
Similarly to Bai et. al. [3], Wulff et. al. presented MR-Flow (Mostly Rigid-Flow)
[LO1]] which uses CNN to produce a semantic rigidity probability score across
different regions also taking into account that some objects are more likely to move
than others. This score is combined with additional motion cues to obtain an estimate
of rigid and independently moving regions. A classical unconstrained flow method is
used to produce a rough flow estimate. After that, the information on rigid structures
and the initial optical flow are iterated and jointly optimized. Currently MR-Flow
ranks first place in Sintel clean pass (see Sec.[d.T).

3.7 Multi-frame Methods

To the author knowledge multi-frame methods have been explored since 1991 with the
work of Black and Andan [9]. Currently, multiframe methods are the top performing
in the Sintel benchmark final pass and second best in Sintel clean pass. As already
mentioned for the final pass case the methods are based on PWC-net and thus fully
learnable: Neoral et. al. [62]] and Ren et. al. [[74]].
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Table 5 Overview of hybrid learning methods. * =top among methods working with frame pairs.

PAPER
YEAR CONTRIBUTION BUILDS ON LIMITATION
REF.

DCFlow

2017 CNN to produce cost function EpicFlow Long inference
[104]

PatchMatch Siamese Networks with new
2017 . FlowFields Long inference
loss function

[32]

SOF Semantic Segmentation

2016 Different models for di ﬂ.?eren { layers DiscreteFlow, Not tested on Sintel

1801 " DenseFlow[84]

MR-Flow* ..

2017 CNN'produce rigidty score. DiscreteFlow Long inference

Iterative refinement

[101]

Guney et. al.

2016 Local and Context siamese networks  DiscreteFlow Piece-wise training

1271

Bai et. al. Siamese CNN. SOF,

2016 Exploit segmentation. Epicflow for  Automotive domain

131 Epipolar Flow refinement.

PatchBatch

2016 Siamese CNN PatchMatch, Long inference

23] EpicFlow

Behl er. al. Tatarchenko

2017 Stereo frames. CNNs, CRF Automotive domain
et. al. [90]

(3]

l;/([)zil,érer et. al. CNN trained during inference, CPM [32], Long inference

54 multiframe, Best on SINTEL clean. RichFlow

Proflow, Maurer et. al. [54] obtains the second best score in Sintel clean pass.
Proflow is based on Coarse-to-fine Patch Match (CPM) Hu et. al. [32], RichFlow
and as additional refinement for the matches, Maurer ez. al. [55]. Finally ProFlow
uses a CNN trained online (during the estimation) on forward and backward flow to
obtain a sparse to dense motion field. The model is learnt in-place and makes this
method quite different from the others in this chapter.
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4 Discussion

4.1 Flow Estimation Benchmarks and Performance Assessment

Optical flow evaluation is a difficult task for many reasons: optical flow information
is difficult to obtain for real scenarios and artificial scenes might not be as challenging
as natural videos. Optical flow benchmarks count just few datasets. The Middlebury
benchmark [6] is composed of sequences partly made of smooth deformations, but
also involving motion discontinuities and motion details. Some sequences are syn-
thetic, and others were acquired in a controlled environment allowing to produce
ground truth for real scenes. However the dataset is limited to few sequences and
its challenges have almost been completely overcomed by modern methods [22]].
For this reason, a new dataset has been generated: MPI-sintel evaluation benchmark
[14]. Sintel is drawn from a short computer rendered movie, it counts around 1500
frames with optical flow groundtruth. Two thirds of the dataset is given for training
and the rest is used for evaluation. Sintel is a challenging benchmark including fast
motion, occlusions and non-rigid objects. There are in parallel more optical flow
benchmarks that have been released to evaluate optical flow, KITTI 2012 [24] which
consists of moving camera in static scenes, KITTI 2015 [59] extended to dynamic
scenes, large motion, illumination changes and occlusions, and HD1K dataset [42]],
but they are tailored for the automotive domain. Thus, for applications not related
to the automotive domain the most common benchmark is Sintel. Error measures
such as photometric error on frame interpolation sequences can be misleading as not
necessarily photometric error correspond to optical flow error (see Sec.[3.2.2)). More-
over optical flow estimation face several different challenges: small displacement,
large displacement, light change and occlusions [99]. To correctly assess perfor-
mance all these factors must be taken into account, but this is hard to catch with a
single metric. Thus, performance are measured using different metrics: (i) EPE all;
(ii) EPE matched (EPE on non occluded regions); (iii) EPE unmatched; (iv) d0-10,
d10-60, d60-140, which are average endpoint error in regions within the indicated
displacement range taking only matched pixels into account; (v) s0-10, s10-40, s40+,
which are average endpoint errors in regions moving within the specified speed range
per frame. The overall ranking is a combination of the previous metrics, evaluated
both for “clean” pass (no change in light) and “final” pass (change in light, strong
atmospheric effects, motion blur, camera noise). E]

4.2 Optical Flow Estimation Ranking

As explained above, it is very difficult to rank optical flow estimation methods
because performace cannot be accurately assessed by a single metric or a single

4 An in-depth explanation on how Sintel dataset was generated is given in [14] and [13].
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scenario. For this reason we believe it is more important to cluster methods based
on their application domain.

Nonetheless, in this fast changing research field it is more important to underline
what are the characteristics that give substantial improvement. Currently, the best
optical flow methods for Sintel clean pass are Deep Learning Hybrid Methods
exploiting Domain Knowledge (see [3.6.2), the best method is MR-Flow, followed
by hybrid multiframe ProFlow. Sun et. al. [877] conjecture that this is because they
exploit traditional methods to refine motion boundaries which are perfectly aligned
in the clean pass. Differently, on Sintel final pass the post processing effects cause
severe problems to existing traditional methods. In this challenging situation Deep
Learning coarse-to-fine methods (see Sec.[3.2.T)) obtain the best performance. PWC-
net is the top performing two frame optical flow method, outperformed only by
multi-frame methods applying PWC-net to multiple frames. Moreover it is believed
that the final pass is more challenging and realistic because it is corrupted by motion
blur, atmospheric changes and noise. However, PWC-net as others coarse-to-fine
methods may fail on small and rapidly moving objects, due to the coarse-to-fine
refinement (see Sec. [3.1.2).

4.3 Biometrics Applications of Optical Flow

There are several applications of optical flow estimation in the biometrics field. In
this section, we briefly discuss most notable applications.

In [82] optical flow estimation has been adopted for the Face Recognition task.
The results were promising, e.g., for particular sub-task of distinguishing real people
from their image. Human Pose Estimation and Tracking is another application where
optical flow has been applied and has shown promising results [[103]. Accordingly, it
has been shown that the use of optical flow, based on pose propagation and similarity
measurement, can result in substantially superior outcome compared to baselines.
The task of single person pose estimation has been addressed by several researchers,
where pose estimation accuracy has been enhanced by considering optical flow [70].
In a more recent work [20], the authors extended this research line and addressed a
more difficult task, i.e., Multi-People Tracking (MPT).

Another example of application of optical flow in biometrics is Action Recogni-
tion. In a recent work [63]], the authors have jointly estimated the optical flow while
recognising actions with convolutional neural networks capturing both appearance
and motion in a single mode. The result has shown that this model significantly
improves Action Recognition accuracy in comparison to the baseline. In [53] the
authors proposed a multi-task CNN model that receives (as input) a sequence of
optical flow channels and uses them for computing several biometric features (such
as identity, gender and age).

It is worth noting that, these were some examples of the applications of optical
flow estimation in biometrics. While we mentioned some important works, however,
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there could be further works coming up in recent time, using more advanced optical
flow estimation techniques for the particular application in biometrics.

5 Conclusion

In this book chapter, we have provided a survey on the state-of-the-art in optical
flow estimation with a focus on Deep Learning (DL) methods. We have conducted
a comprehensive analysis and classified a wide range of techniques, along with an
identified, descriptive and discriminative dimension, i.e., whether the techniques are
based on DL, or they are traditional hand-crafted. We have reported the similarities
and differences between DL and traditional methods. We believe that this systematic
review on optical flow estimation can help to better understand and use the methods,
hence providing a practical resource for the practitioners and researchers in the field
of biometrics. In addition to that, we described and listed datasets for optical flow
estimation, commonly employed by the research community, and also discussed
some important issues that have to be considered for a proper evaluation procedure.

It is worth noting that optical flow estimation is a mature, while still growing,
research field and can be seen as a multi-disciplinary area. This research area partially
overlaps with a broad range of topics, such as Signal Processing, Computer Vision,
and Machine Learning. Hence, our book chapter by no means can be all-inclusive,
and indeed it focuses mainly on DL methods that are of practical importance for
biometric research.
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