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Fashion Recommender Systems in Cold Start

Mehdi Elahi and Lianyong Qi

1 Introduction

Fashion is defined as “The cultural construction of the embodied identity” 1. Fashion
is commonly described as the prevailing style of dress or behavior and it can be
characterized by the notion of change. Fashion encompasses various forms of self-
fashioning ranging form street styles to high fashionmade by designers [94]. Amajor
challenge in the fashion domain is the increasing Variety, Volume, and Velocity of
fashion production which makes it difficult for the consumers to choose which
product to purchase 2. Shakespeare has -somehow- addressed this issue a long time
ago by noting “that the fashion wears out more apparel than the man” [109]. This is
not necessarily all negative as the more choices available the better the opportunity
for consumers to choose appealing products. However, this phenomenon shall result
in the problem of choice overload, i.e., the problem of having unlimited number of
choices, especially when they do not differ significantly from each other [9, 6].

Recommender systems can mitigate this problem by suggesting a personalized
selection of items (i.e., fashion products) that are predicted to be the most appealing
for a target user (i.e., fashion consumer) [101, 111, 102, 64]. This is done by filtering
irrelevant items and recommending a shortlist of the most relevant ones for the users.
An effective filtering requires the system to (thoroughly) analyze the user preferences
and (deeply) learn the particular taste and affinity of every individual user. A real
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world example could be analyzing the purchase history of a customer in Amazon 3

and predicting the interests of the user and ultimately generating recommendation for
her. During this process, the recommender system can carefully observe the users’
behaviors and elicit different forms of user preferences, in order to understand the
personal needs and constrains of the users [104, 97, 114].

User preferences can be elicited in different forms, i.e., in the form of explicit
preference or implicit preference [71, 113]. Explicit preference is a form of user
assessment that is explicitly reported by a user (e.g., ratings for items in Zalando 4)
[44, 45]. In spite of its benefits, eliciting explicit preferences requires a certain level
of user efforts [39] and may still lack to fully picture the true desires of a user [87].
Implicit preference is another form of preferences which is inferred from the actual
observed activities (e.g., clicks on items inZalando) [91, 59, 49]. Although traditional
recommender systems focused on exploiting explicit preferences, however, modern
recommendation platforms, particularly in e-commerce, shifted towards techniques
that deal with implicit preferences.

Proven capability of recommender systems in learning different forms of user
preferences and effectively dealing with choice overload has empowered them to
turn to be an essential component of any modern e-commerce that needs to deal
with a large catalog of items [15]. Fashion recommender systems have also shown
to be effective in supporting users when making choices. Fashion recommendation
deals with personalized selection and suggestion of a variety of products ranging
from clothing to makeup, including recommendation of individual products or a set
of products (outfits). Such a personalized recommendation is commonly generated
based on the preferences of a network of consumers and computing the relationships
and similarities among their preferences [18, 88, 96, 54, 121]. The effectiveness
of fashion recommender systems has been proven in the cases where a decision
support tool is needed to assist fashion customer during their interactions with an
online shop. Such a support enhances the experiences of the users during the time
of shopping, e.g., with surprising recommendation offered to them.

This book chapter addresses the cold start problem in fashion recommender sys-
tems. It describes different scenarios of cold start and reviews the potential solutions
for this problem proposed so far. The rest of the book chapter is organized as follow-
ing: section 2 briefly describes the common recommendation techniques in fashion
domain. Section 3 explains different scenarios of cold start problem and section
4 reviews solutions for this problem, namely, solutions focused on item-based and
user-based side-information (subsection 4.1 and 4.2), solutions based on implicit
preferences (subsection 4.3), and potential solutions based on cross-domain and ac-
tive learning (subsection 4.4 and 4.5). Finally, section 5 provides a conclusion for
the book chapter.

3 https://www.Amazon.com
4 https://www.zalando.no
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2 Techniques for Fashion Recommendation

There have been awide range of recommendation techniques that have been proposed
in fashion domain [76, 63]. These techniques can be classified into the following
categories:

Fig. 1 Schematic figure representing a rating matrix [4]

• Collaborative Filtering (CF) [58, 67, 54] is a popular recommendation technique
that aims at learning preferences of users from their ratings for fashion items
and predicting the missing ratings that might be given to other products by the
users. The user preferences are typically provided to the system in the form of
a rating matrix where every entry represents a rating given by a user to an item
(see Figure 1). The system then recommends to a user those items that have the
highest predicted ratings (i.e., missing entries in the rating matrix).

• Content-based (CB) [10, 18, 122, 76] class of recommendation techniques focuses
on adopting the content of the fashion items and generating recommendation
based on the content features (e.g., textual description or visual features).

• Hybrid [65, 21, 74] class of recommender systems takes advantage of a combi-
nation of techniques from multiple classes of recommender systems in order to
deal with the limitations of the individual techniques.

• Machine Leaning class of recommendation techniques adopts a range of com-
putational models with different mechanisms compared to the above-mentioned
(classical) techniques. An example is [76] where a latent Support Vector Ma-
chines (SVM) has been developed for fashion recommendation. Another example
is [62] where the authors adopted a probabilistic topic model for learning fashion
coordinates that can be used for recommendation. In [63] the authors combined
a deterministic and a stochastic machine learning models for recommendation.
Another group of approaches implements Learn-to-Rank (L2R) algorithms for
recommendation with three alternative variations, i.e., pointwise, pairwise, and
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listwise [78]. Pointwise variations predict the relevance score of each item inde-
pendently. Pairwise variations aim at correctly ordering the pairs of items instead
of individual items. Hence, the objective is to rank the more relevant items higher
than less relevant ones. Listwise variations rely on ranked lists as training exam-
ples [45]. In [58], the authors proposed a technique based on tensor factorization
in order to find the best clothing match. The authors of [55] proposed a technique
that extends the Bayesian Personalized Ranking (BPR) by incorporating differ-
ent item features. A more recent set of works developed recommender systems
adopting different variations of the neural networks. An example is [56] where the
authors employed Long Short-TermMemory (LSTM) cells [57] to learn temporal
correlations between purchases in a fashion shop and to predict the preferred style
of each user based on their past purchases.

Although the core recommendation technique plays an important role for the per-
formance, still a recommender system will fail to generate relevant recommendation
of fashion products without having certain quantity of quality preference data. This
problem is known as Cold Start and it happens when the system has not yet acquired
sufficient preference data (e.g., user ratings) to build meaningful recommendation
for users (see Figure 2). The most common cases of the cold start problem happen
when the recommender system is unable to build recommendation for a new user,
known as New User problem. Another problem happens when the recommender
system is unable to recommend a new item to any user, known as New Item problem
[4, 108, 7, 35]. In severe cases of cold start, both of the new user and new item prob-
lems may happen all together. This is a case when an online fashion shop is recently
launched and the database does not contain considerable quantity and quality of data
portraying the preferences of customers [115, 7, 35].

3 Cold Start

Fashion recommender systems use a dataset of user preferences, typically in the form
of ratings, that have been provided by a large community of customers to a catalog of
fashion products. The dataset can be defined as a rating matrix where rows show the
customers (users) and columns show the fashion products (see Figure 1). Fashion
recommender systems then use this dataset and compute prediction for the items
that might be interesting to a target user [70, 33]. Recommender systems recognize
patterns of relationships within the data and exploit them to build rating predictions
that can ultimately be used for generating recommendation.

Predicted ratings are built for each unknown rating for a user-item pair within the
defined rating matrix. This leads to computing a ranking list for fashion items, for a
particular user. In the ranking list, the items are sorted accordingly to the predicted
ratings for that user. Fashion recommender system short-lists the top items of the
ranking list with the highest predicted ratings and presents them to a target user in
the form of a recommendation list.
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Fig. 2 User Cold Start scenarios: (i) Extreme User Cold Start, (ii) Moderate User Cold Start,
and (iii) User Warm Start. Within each scenario, certain values of user-annotated features can be
unknown to the recommender system. These missing features are indicated with “?" mark.

It is a fact that fashion recommender systems have already shown promising
performance in dealing with particularities of this domain. However, they may still
suffer from a number of challenges due to the lack of data for certain users or certain
items [4, 108]. These challenges are mainly related to the cold start problem. One of
the main challenges is defined as the New User problem which may happen when a
new user enters to the fashion recommender system and requests recommendations
before she has provided any preferences to any item (see figure 2). Another form
of this challenge is defined as the New Item problem which happens when a new
fashion product is added into the item catalog and none of the users has yet rated that
new product (see figure 3). Similarly, the Sparsity of the rating dataset is known to
be another related challenge. In extreme cases of sparsity problem, the performance
of the fashion recommender systems will be damaged resulting in a very low quality
of recommendation. In such a situation, the number of known ratings is extremely
lower than the number of unknown ratings and still the fashion recommender system
has to make predictions for the large number of unknown ratings [4, 11].

In real-world fashion recommender systems, different scenarios may happen, i.e.,
Extreme cold start, Moderate cold start, Warm start scenario.
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Fig. 3 ItemCold Start scenarios: (i) Extreme itemCold Start, (ii)Moderate itemCold Start, and (iii)
item Warm Start. Within each scenario, certain values of user-annotated features can be unknown
to the recommender system. These missing features are indicated with “?" mark.

• Extreme Cold Start in fashion recommender systems occurs when a new user
registers to the system and requests recommendation before providing any data
about her preferences (extreme new user problem). This scenario is illustrated in
Figure 2 (top row). This problem also occurs when a new product is added to
the catalog without holding any data that can describe that item. Consequently,
the system would fail to recommend that item to any user (extreme new item
problem). This scenario is shown in Figure 3 (left column). This is a serious
problem and has to be tackled promptly.

• Moderate Cold Start occurs when a limited amount of preference data is pro-
vided by a user or a certain form of side information is collected to be used by
the system for recommendation (Moderate New User Problem). This scenario is
illustrated in Figure 2 (middle row). It could also happen for a new item when
some sort of semantic features are partially available (Moderate New Item Prob-
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lem). This scenario is shown in Figure 3 (middle column). Moderate cold start
can happen as a mixed scenario of extreme cold start for some items and warm
start for other items. Hence, it can be seen as an intermediate situation when a
recommender system is in a transition phase from extreme cold start to warm
start situation. However, this still means that the system has a serious problem as
the user and items in the extreme cold start situation may not be well served by
recommender system. This is the most common scenario and related literatures
typically refer to this scenario as a cold start.

• Warm Start can be considered as the best possible scenario for fashion recom-
mender systems as significant information provided by users (User Warm Start).
This scenario is illustrated in Figure 2 (bottom row). In the case of items, it refers
to the situation when fashion products have already obtained considerable prefer-
ence data that can be well exploited for recommendation (ItemWarm Start). This
scenario is presented in Figure 3 (right column). There could be also considerable
quantity of user-annotated semantic features (i.e., tags and reviews) in the dataset.

The rest of the book chapter, reviews the potential solutions to tackle the cold
start problem.

4 Potential Solutions

4.1 Item Side Information Approaches

Content-based Filtering (CBF) has been one of the most popular approaches for
recommendation in different application domains [63, 122, 64, 76, 47]. CBF relies
on content features of items (as known as side information) in order to effectively
mitigate the cold start problem in recommender systems [29, 13, 36, 30]. In fashion
recommender systems, when a new product is added to the item catalog, an initial
profile of the item is made by using different sources of content features (see fig-
ure 3)[65, 52]. These content features are exploited by the system to form a Vector
Space Model (VSM) [93], where items are represented by a multi-dimensional vec-
tor [80, 27, 31]. The system adopts machine learning models that can learn from
item vectors and recognize patterns among them and ultimately generate relevant
recommendation [84, 103].

Traditionally, content features exploited by recommender systems were semantic
features based on semantic content (e.g., item description, tags, and category) [27,
80, 106, 32, 7]. However, recent approaches for fashion recommendation implement
the novel idea of further enriching the item descriptionwith visual features [28]. Such
visual features encapsulate the aesthetic form of the fashion products and represent
the style. Such visual features are typically extracted from the product images based
on the methodologies brought from Computer Vision and multimedia retrieval and
recommendation [116, 53, 72, 105, 103].
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A variety of research works have been performed on investigating usage of visual
features for user and item modeling in fashion domain, e.g., for clothing matching
[58, 83] and visually-aware recommendation [54, 55, 62]. Different forms of visual
features have been proposed for extraction that can be classified into two big classes,
i.e., (i) Hand-crafted features and (ii) Deep Learning (DL) based features [65, 125,
77, 63, 54, 55, 62].

While hand-crafted features [65] may still offer promising performance, recently,
deep learning based approaches have achieved superior accuracy in comparison to
them [19]. Adopting Convolutional Neural Networks (CNN) is an example of ap-
proaches based on deep learning that builds discriminative representation of fashion
products [79]. Another work that pioneered this research is [76] where the authors
proposed a clothing recommender system based on human body parsing detectors
and latent Support Vector Machine (SVM) model. The authors in [58] proposed a
technique called Functional Pairwise Interaction Tensor Factorization (FPITF) that
is capable of using tensor factorization in order to predict the clothing match.

Regardless of the type of features, several works developed methodologies to ex-
ploit the content features when dealing with cold start problem. In [26], the authors
proposed a content-based recommender system that constructs detailed clothing fea-
tures to build up item profiles. The recommender algorithm is based on K-Nearest
Neighbors (KNN) which is commonly used to make similarity-based recommenda-
tion for new items. Authors of [52] extended Collaborative Filtering and enabled
it to recommend groups of fashion products (instead of individual products). The
groups are formed based on certain type of features such as product category. This
allowed their recommender system to tackle the new item problem. The approach
has been deployed in a fashion retailer called Rue La La. In [56] the authors em-
ployed Long Short-TermMemory (LSTM) cells [57] that can handle cold start while
learning temporal correlations between purchases in a fashion shop and ultimately
to generate recommendation based on their past purchases.

In addition, there exists other works that go beyond recommendation and extend
usage of visual features by performing recognition, parsing, and style extraction
of clothing [65]. By common definition, clothing recognition focuses on matching
clothing with clothing in an online shop and retrieving similar clothing from their
photos. Clothing parsing methods aim at decomposing and labeling semantically
meaningful parts of the clothing photo. Style extraction methods aim to learn the
style of a product by extracting descriptive features from its visual content [65].
Among these tasks, the extracted style of clothing can be the most relevant for the
fashion recommendation. For instance, the clothing style will enable the recom-
mender systems to tackle the new item problem. Examples of approaches within
this group of recommender systems are [68, 20]. Even collaborative filtering based
techniques can be extended to be capable of using visual features. As an example, au-
thors [55] proposed Visual Bayesian Personalized Ranking (VBPR) that extends the
Bayesian Personalized Ranking (BPR) by incorporating the visual features. VBPR
can be further extended to model the evolution of fashion trends in visually-aware
recommendation [54].
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4.2 User Side Information Approaches

A potential approach to deal with the cold start problem focuses on exploiting
additional user attributes (as known as side information). A number of works have
adopted this approach to build a customer profile not only in fashion domain [85, 17]
but also other domains [12, 86, 86, 82]. Different forms of user attributes has been
proposed in the recommender system literature. One of the important forms of side
information represents the psychological characteristics of user and can be modeled
by Personality Traits. The personality traits are defined as predictable and stable
characteristics of individuals which can explain the “consistent behavior pattern and
interpersonal processes originating within the individuals” [14]. Personality traits
can represent the differences of individuals with respect to emotional, interpersonal,
experiential, attitudinal and motivational dimensions [66].

A number of previous researches have investigated the impact of clothing attribute
on the impression of personality. The results have shown that clothing (as part of
fashion) can communicate comprehensive pieces of information about differences
among people [123]. For instance, clothing can represent the favor, society level,
attitude toward life, and personality. In fact, clothing is a language of signs, a
nonverbal system of communication [81]. The authors of [25] modified the clothing
colour for job applicants and changed it from light to dark. The results have shown
certain level of differences in judgments of applicants.

A range of psychological models have been proposed to model the personality
traits of an individual. A popular model is the Big Five Factor model (FFM) [22]
which explains the personality of an individual in terms of five dimensions called
big five traits. The list of these traits is: Openness, Conscientiousness, Extroversion,
Agreeableness and Neuroticism (as known as OCEAN). Figure 2 (right column)
illustrates how the personality traits can be represented in a user profile.

A number of reviewed works have shown that individuals with dissimilar person-
ality traits follow dissimilar choice making processes [90, 41]. Hence, individuals
with similar personality traits aremore likely to share similar choices and preferences
[107, 100]. Prior works have also developed the idea of using personality traits in
recommender systems to mitigate the cold start problem [11, 107]. When a new user
registers in a recommender system and has not given any information about herself,
personality traits can be an alternative source of information in order to build rele-
vant recommendation (see Figure 2). This can be done to compute the user-based
similarity using personality traits or building computational (latent) models based
on personality traits [41]. As an example of works within this area, the authors of
[118] adopted different recommendation approaches and showed that incorporation
of personality may lead to a better recommendation quality in cold-start scenario.
[89] has investigated the potential of using personality and showed that personality
characteristics can lead to improvement in the performance of recommender systems.

In fashion domain, limited attempts have been done on learning from effective
signals obtained from people (i.e., short-term emotions as well as long-term moods
and personality traits) for the potential of making recommendation. For instance,
[95] integrated emotion signal of consumers for building recommendation of fashion
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products in the cold start situation. The work aimed at investigating the potential
power of peoples’ affective characteristics in predicting their preferences for fashion
products. In [40] the authors proposed a recommender system that can use different
forms of information, including user persona (personality) and social connections
to recommend clothing. The authors of [123] has made analysis on exploring the
potential relationship of personality type and how people make choices of wearing.

4.3 Approaches based on Implicit Preferences

An alternative type of cold start solutions focuses on collecting the implicit prefer-
ences (feedback) from the users and utilizing them for generating recommendation.
When a customer enters to an online shop, the system can monitor her activities and
try to infer her preferences from the activities. As an example, the system can log
the browsing history or purchase records and learn the actual preferences of the user
which are then exploited for recommendation. In modern recommender systems,
even facial expressions of the users can be used to identify emotions and ultimately
the preferences and choices [1, 119, 120].

A wide range of recommender systems are capable of leveraging implicit prefer-
ences, some of which are specifically designed for that goal [59, 99, 98, 50] and the
others adopt hybrid models that use both of the implicit and explicit preferences. As
an example, the authors of [69] extend the standard Singular Value Decomposition
(SVD) model which originally leverages only explicit preferences. The extended
model is called SVD++ and it can exploit implicit preferences in order to generate
recommendation.

In fashion domain, a number of works have proposed a recommendation frame-
work based on the implicit preferences. For example, in [55], a recommendation
model has been developed that can tackle the cold start problem by incorporating
both implicit preferences from users together with visual features from items. In [88],
the authors assumed that no explicit preferences are available and hence developed
a fashion recommendation framework that can learn from implicit preferences of
users collected by a fashion app. The collected data includes user actions ranging
from scrolling in the app to purchasing a product. In addition to user related data,
the system also uses item price and popularity in order to generate recommenda-
tion. Also visual Bayesian personalized ranking [54], introduced before, is capable
of incorporating the implicit preferences for improving the performance of fashion
recommendation in cold start.

4.4 Cross-domain Approaches

Alternative class of approaches for fashion recommender systems focuses on using
cross-domain methodology [65]. This recommendation class is also referred to as
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transfer learning where a (data-driven) function is learnt to link the target domain
(fashion) and auxiliary domains. This can be done by projecting the representations
of the target and auxiliary domains into a common feature space.

Cross-domain recommendation has been well-studied not only in the field of
recommender systems, but also in related research areas for a situation where only
a limited quantity of data might be available in the target domain [61]. The reason
can be due to the fact that current e-commerce web applications typically operate in
multiple domains and they use mechanisms to aggregate multiple types of data from
multiple domains. Availability of such data can bring benefits to a recommender
system and enable it to perform cross-selling or coping with the cold start problem
in its target domain.

There have been various algorithms developed for cross-domain recommendation
[42, 124, 92]. While these algorithms may implement different mechanisms for the
cross-domain recommendation, they share commonalitieswhich enable us to classify
them into two major classes, i.e., Knowledge Aggregation approaches [2, 8, 110, 16]
and Knowledge Transfer approaches [24, 117, 46, 73].

The former approach aims to aggregate the knowledge from different auxiliary
domains in order to generate recommendations in the target domain. The latter
approach is based on the idea of eliciting and transferring the user ratings from
auxiliary domains and transfer this knowledge to the target domain. In this sense,
the latter approach attempts to link different domain knowledge in order to support
the recommendation for the target domain [24, 35].

A representative example is the work of [51] where authors proposed a deep
learning technique to compute the similarity among the photos taken from streets and
shops. The technique is based on Convolutional Neural Networks (CNN). Transfer
learning has been also adopted to mitigate the complexity of training deep learning
techniques in the fashion domain. As an example, [75] proposed adopting GoogleNet
architecture [116] for their training set for that task of feature extraction from clothing
[65].

4.5 Rating Elicitation Approaches

An alternative set of approaches that can remedy the cold start problem are based on
the idea of rating elicitation in recommender systems. These approaches are called
Active Learning, a notion that traditionally has origin in theory of machine learning
[43, 39]. This set of approaches has been adopted for designing algorithms in solving
problems with scarce resources [112, 5, 3]. Active learning can be applied when a
machine learning algorithm needs a large dataset for training [48] while such data is
limited or expensive to acquire.

Active learning can offer a number of advantages specially in the initial phase of
interaction of new users with recommender systems. It can be used to request the
new users to reveal their preferences by rating a set of items [38, 37, 34], enabling
the recommender system to bootstrap its knowledge about the taste and affinity of
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the new user (see figure 2). Active learner adopts a number of heuristics or rules to
coordinate the process of rating elicitation. Those heuristics (as known as strategies)
will allow the system to concentrate on eliciting the ratings that are more informative
for the system to learn the user profile [97, 104]. This can be done in a single domain
or multi-domain scenario [92].

In fashion domain, a minor attention has been drawn by active learning strate-
gies. As an example, [60] presents an active learning strategy as part of clothing
image retrieval and recommendation framework. The strategy is enabled to learn the
preferences of users and use them for generating personalized recommendation. The
proposed framework can also utilize a content-based algorithm and employ a user
interaction to elicit the user feedback. The evaluation has shown the effectiveness of
the developed strategy.

5 Conclusion

This book chapter discusses several scenarios related to the cold start problem in
fashion recommender systems. The challenges that may happen in each of these
scenarios can largely damage the performance of fashion recommender systems
regardless of the quality of the core algorithm. The chapter reviews potential solutions
that can be utilized to remedy these challenges.

The solutions can be classified into a number of categories, namely approaches
based on item side information and user side information, approaches based on
implicit preferences, cross-domain approaches, and active learning. Most of these
approaches have been well-integrated in fashion domain while some may still have
potential to be used due to their promising results in the other related domains. It is
important to note that none of the approaches can necessarily offer the ultimate and
conclusive solution to all of the above-mentioned cold start scenarios. In fact, every
approach has a set of advantages and disadvantages which make it a unique solution
that may better suit to a specific cold start scenario.

Moreover, many of the surveyed literatures have mainly viewed the fashion rec-
ommender systems from a narrow lens of classical rating-based systems with the
matrix representation of users and items. Hence, the subject of the recommendation
is reduced to mainly suggesting outfit to a potential fashion shopper. This is while the
task of fashion recommendation may go beyond that traditional view of only finding
the right outfit for a shopper and become more of modelling fashion products along
with dimensions of style, design, size and fit.

Finally, it shall be noted that, additional to an efficient solution that can deal
with cold start problem, a recommender system requires effective usage of interface
and interaction design [23] to well serve its users and to fulfill their needs and
constrains. This makes the research on cold start to be a cross-disciplinary area where
various disciplines are involved, e.g., Interaction Design, Data Science, Databases
and Psychology. This chapter may hopefully open up and offer a bird eye view of the
cold start in fashion domain which shall be beneficial for researchers in the academia
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and practitioners in the industry, and as a result, advancing the knowledge in the
recommender systems area.
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